Operators
Day-01
05-03-2025
===================

Operand:
======
	a value on which we can define any operation

Operator:
======
	a symbol which denote an operation

Expression:
========
	the combination of operators and operands is called as an "Expression".

x - y
x + y

Statement:
=======
-> a line of the program is called as statement.
-> That every statement must be terminated with semi-colon.
Types of Operators:
=============
-> On the basis of number of operands, the operators are classified into two types:
	1) Unary operators

	-> The operators can be defined with single operand are called as "Unary Operators".

	2) Binary Operators

	-> The operators which are defined with two operands are called as "Binary operators".

n = 7
if the above number is negative, ==> -7
a + b
-> Based on the usage the operators are classified into:
	1) Arithmetic Operators	
	2) Comparison Operators
	3) Compound Operators
	4) Logical Operators
	5) Bitwise Operators
	6) Special Operators

Ex: update Employee_Table set Employee_Name = "Kishore" where Employee_Id = 102 and Age = 26;

Note:
=====
In SQL, the operators can be used to represent with symbols and also with keywords.

1) Arithmetic Operators

	+	==> Plus ==> addition
	-	==> Hyphen ==> Minus ==> Subtraction
	*	==> Asterisk ==> Multiplication
	/ 	==> Slash ==> Division ==> can give a quotient after the division
	% 	==> Percentage ==> Modulus ==> can give the remainder after division

Ex: Employee
salary = 25000
allowance = 5000
total-salary ==> salary + allowance ==> 25000 + 5000 ==> 30000
paid-leaves-cost = 700
total-salary ==> 30000 - 700 ==> 29300/-
paid-leaves = 3
paid-leave-cost = 350/day
=> total paid leave cost ==> 3 * 350 ==> 1050

2) Comparison Operators

-> Also called as "Relational operators"
-> The comparison operators are:
	=	=> Equal operator
	!=
	<> 	==> Not equal operators
	<	==> less than
	>	==> greater than
	<=	==> less than equal
	>=	==> greater than equal

7 = 7 ==> true
10 < 5 ==> false

3) Compound Operators

x = 100
x = x + 10 ==> 110
x += 10 ==> 110

+=, -=, *=, /=, %=, &=, |= etc.

x -= 2 ==> x = x - 2

4) Logical Operators

-> Three logical operators:
	1) logical and 	==> and
	2) logical or 	==> or
	3) logical not 	==> not

Truth table:

	a		b		a and b		a or b
	--
	true		true		true		true
	true		false		false		true
	false		true		false		true
	false		false		false		false

logical and

If any of the input is "false", the output is "false"
when both inputs are "true", the output is "true"

logical or

If any input is "true", the output is "true"
When both inputs are "false" then only the output is "false"

logical not:

Syntax:
	not operand
-> not operator can alter the input
	not true --> false
	not false --> true

Day-02
06-03-2025
================
binary literal in SQL ==> b'1010101'
0b10101 ==> base-2 (0 and 1)
octal --> 012 ==> base-8 (0 to 7)
hexadecimal --> 0xc12 ==> base-16 (0 to 9 and a to f)
decimal ==> 1023 ==> base-10 (0 to 9)

Bitwise Operators:
============
-> The operations to be performed on the data bit by bit those operators are called as "Bitwise Operators".
-> Bitwise operators are:
	bitwise and	-->	&
	bitwise or	--> 	|
	bitwise xor	-->	^
	bitwise not	-->	~
	left shift 	--> 	<<
	right shift 	--> 	>>

bitwise and	-->	&

-> binary operator
Syntax:
	operand1 & operand2

a	b	a & b
==========
0	0	0
0	1	0
1	0	0
1	1	1

Note:

bitwise operators can always allow to define on integer but not on the floats.

Ex: 10 & 12 = 8

bitwise or -->
a	b	a | b

0	0	0
0	1	1
1	0	1
1	1	1

bitwise xor	-->	^

a	b	a ^ b

0	0	0
0	1	1
1	0	1
1	1	0
bitwise not	-->	~

-> also called as "bitwise complement".
Syntax:
	~ operand
-> Unary operator
-> can find the 2's complement of the given number.
-> positive --> negative and negative ==> positive
