
Django Proxy Model Inheritance :

 Django supports Proxy model inheritance to control the model by using another model.

 Proxy model is a model which controls or manages the non-abstract model.

 The meaning of Proxy is "Controlling".

 By using Proxy model, we can perform all CURD operations on the non-abstract model.

 We have to create Meta model to make a model as proxy model

 We have to set proxy = True in the meta model.

 Django does not creates database table for proxy model separetly. It is using existing

 model table only.

Example Structure:

class Employee(models.Model):

 eno = …

 ename = ..

 salary = …

 address = …

class EmployeeProxy(Employee):

 class Meta:

 proxy = True

Create a project using Proxy Model Inheritance:
Step1: Create a Django ProjectName like Proxy_Project

Step2: Create a Application Name like Proxy_App

Step3: Create Database Name like 7am_proxydb

Step4: Goto settings.py file and configure database details under DATEBASE section.

DATABASES = {

 'default': {

 'ENGINE' : 'django.db.backends.mysql',

 'NAME' : '7am_proxydb',

 'USER' : 'root',

 'PASSWORD' : 'root',

 }

}

Step5: Open models.py file and create required models

from django.db import models

class Employee(models.Model):
 eno = models.IntegerField()
 ename = models.CharField(max_length=30)
 salary = models.DecimalField(max_digits=10, decimal_places=2)
 address = models.TextField()

 class Meta:
 db_table = 'employee'

 def __str__(self):
 return self.ename

class EmployeeProxy(Employee):
 class Meta:
 proxy = True

Step6: Goto admin.py file and write the following code

from django.contrib import admin
from Proxy_App.models import Employee,EmployeeProxy

@admin.register(Employee)
class EmployeeAdmin(admin.ModelAdmin):
 list_display = ['eno', 'ename','salary','address']
 search_fields = ['ename']
 ordering = ['salary']

@admin.register(EmployeeProxy)
class EmployeeProxyAdmin(admin.ModelAdmin):
 list_display = ['eno','ename','address','salary']
 search_fields = ['address']
 ordering = ['-salary']

admin.site.register(Employee, EmployeeAdmin)
admin.site.register(EmployeeProxy, EmployeeProxyAdmin)

Step8: Execute the makemigrations command to convert model code into SQL code format

 python manage.py makemigrations

Step9: Execute the migrate command to execute SQL code in database site and creating

tables more models.

 python manage.py migrate

Step10: Execute the createsuperuser command for creating admin creadentials.

 python manage.py createsuperuser

Then it will ask like below details,

Username: Virat

Email : virat@gmail.com

Password: admin123

Password (again): admin123

Step11: Now execute the runserver command for running the project

 python manage.py runserver 8000

Step12: Now open the required browser and then send admin/ url request from the

browser then we will get admin login page response like below

Step13: Login to admin site and add some data into proxy model table.

Now goto Employee model and check the data, it is also must have the same data which is in

EmpProxy model

Note: Here using EmployeeProxy model table we can managing the Employee model table

and also to performing the all CURD operations.

In admin site, Employee model table contains the data which is given by insertion order.

EmployeeProxy table we are using for dispalying the data according to admin requirements

and admin easy interaction purpose.

In admin site, employee table like bellow displays

mysql> select * from employee;

ID ENO ENAME ADDRESS SALARY

--

1 10 Srinivas Hyderabad 50000

2 20 Rohit Mumbai 30000

3 30 Virat Delhi 40000

In admin site, Employee table like bellow displays according to salary based Ascending order.

ID ENO ENAME ADDRESS SALARY

--

2 20 Rohit Mumbai 30000

3 30 Virat Delhi 40000

1 10 Srinivas Hyderabad 50000

In admin site, EmployeeProxy table like bellow displays according to salary based descending

order.

ID ENO ENAME ADDRESS SALARY

--

1 10 Srinivas Hyderabad 50000

3 30 Virat Delhi 40000

2 20 Rohit Mumbai 30000

Differences between abstract and proxy models inheritances

Abstract model inheritance:

1. Abstract model is a model which has the common fields of all non-abstract models.

2. Abstract model contains the common fields of one or more non-abstract models.

3. Django will not create database table for Abstract model.

4 We set abstract = True in the Meta model.

5 Abstract model gives the fields to non-abstract models at runtime.

6 We can not manage non-abstract models through abstract model at runtime.

7 Abstract model name is the super model or parent model to all non-abstract models.

Proxy model Inheritance:

1. Proxy model is model which controls or manages non-abstract model.

2. Proxy model can control or manages only one non-abstract model.

3. Django will not create database table for Proxy model but it can access non-abstract

model table.

4 We set proxy = True in the Meta model.

5 Proxy model takes the all fields from non-abstract model at runtime.

6 we can manage the non-abstract model through the proxy model.

7 non-abstract model name is the super model or parent model to the proxy model.

