
Django Forms Concepts

 A form is a collection of fields and widgets which are used to get the information from user.

 It is very important concept in web development. The main purpose of forms is to take user input.

 Forms provides communication between user and admin or management of website.

 We can create different kind of forms using HTML or django forms module.

 For example: Login form, Registration form, Enquiry form, Create Form, etc.

 From the forms we can read end user provided input data and we can use that data based on

requirement.

 We may store this data in the database for future purpose. We may use just for validation /

authentication purpose etc.

 Here we have to use Django specific forms but not HTML forms.

Django Forms:
 Django providing the "forms" module to developing the required form fields with out using HTML tags

code.

 We can import forms module like below,

from django import forms
 Generally Django supports two types of form classes. They are,

1. forms.Form

2. forms.ModelForm

 When we use forms.Form then we have to specify all model fields into forms.py which will lead to

duplicate coding, it also takes more time to repeate the same fields and fieldtypes in the forms file.

 If we want use the same model fields and with fieldtypes in the form class then we can go for

forms.ModelForm class.

 If we use forms.ModelForm then we can reduce the code in forms.py file and in views.py also we

reduce lot of code to directly access the form data and also directly we can save the data by using

.save().

Advantages of Django Forms over HTML forms:
1. We can develop forms very easily with django code

2. We can generate HTML Form widgets/components (like textarea, email, password etc.) very quickly

3. Validating data will become very easy.

4. Processing data into python data structures like list, dict etc, will become more easy.

5. Creation of Models based forms will become more easy etc.

Note : Create a form class code is like creating the model class code:

For example:

 When we run the models then the models.py code converted into SQL Code and creates database

table in the db.

 When we run the forms then the form.py code will convert into HTML Code and creates a html form

on the browser.

Admin Users and End Users of our application can communicate the Database to managing data of our

application.

For example, see the below diagram

 Admin Users by using admin site presentation , will interact with database of our application.

 End Users by using django template presentation , will interact with database of our application.

 Django template presentation by using pure HTML code and django forms code we can design.

Create a forms.py file to check how form.py code converted into HTML code

 Create one python file name as forms.py inside our application name.

For example:

applicationName

 forms.py

 ...

 ...

 Now Create Userdefined form classes using these Predefined form classes inside form.py.

For example:

from django import forms
class EmployeeForm(forms.Form):
 ename = forms.CharField()
 salary = forms.FloatField()
 address = forms.CharField()
 mobile = forms.IntegerField()

Step1 : Open the python console or python shell using pycharm or command prompt.

Step2 : Import the Usedefined form class into python console and create the object for this form class.

Step3: Now print this form class object then we will get form fields related HTML code on python console.

For example:

Terminal> python manage.py shell

>>>
>>> from applicationName.forms import EmployeeForm

>>> form = EmployeeForm ()

>>> print(form)

Output:
<tr>

 <th><label for="id_ename">Ename:</label></th>

 <td><input type="text" name="ename" required id="id_ename"> </td>

</tr>

<tr>

 <th><label for="id_salary">Salary:</label></th>

 <td><input type="number" name="salary" step="any" required id="id_salary"></td>

</tr>

<tr>

 <th><label for="id_address">Address:</label></th>

 <td><input type="text" name="address" required id="id_address"></td>

</tr>

<tr>

 <th><label for="id_mobile">Mobile:</label></th>

 <td><input type="number" name="mobile" required id="id_mobile"></td>

</tr>

Process to generate Django forms:

Step-1: Create the forms.py file in our application folder with our required fields.

forms.py:

from django import forms
class EmployeeForm(forms.Form):
 ename = forms.CharField()
 salary = forms.FloatField()
 address = forms.CharField()
 mobile = forms.IntegerField()

Note: ename, salary, address and mobile fields are the field names which will be available in html form

Step-2: Usage of forms.py inside views.py file:

 views.py file is responsible to send this form object code to the template html file

 import our Form class from forms.py into views.py file

 Create form object using Form class to generating HTML code for Form class fields.

views.py:
from django.shortcuts import render
from employeeapp.forms import EmployeeForm

def EmployeeFormView(request):
 form = EmployeeForm()
 context = {
 "form" : form
 }
 return render(request, 'employeeapp/employee_form.html' , context)

Note: context parameter is optional. We can pass context parameter value directly without using keyword

name 'context'

Step-3: Creation of html file to hold form:

 Inside template file we have to use template tag or variable name syntax to inject form object like {{

form }} .

 It will add only form fields. But there is no <form> tag and no <input type="submit"> button. Even the

fields are not arranged properly. It is ugly form.

For example: open employee_form.html file

<div class="container" align="center">

 {{ form }}

</div>

Note: It display like below

 We can make proper form by adding <form>, <input type="submit"> tags and {{ form.as_p }}

structure. Here as_p converts every form tag field into paragraph.

For example: open employee_form.html file

<div class="container" align="center">

 <form method="post">

 {{form.as_p}}

 <input type="submit" class="btn btn-primary" value="Submit">

 </form>

</div>

Note: It display like below

 If we submit this form we will get 403 status code response like Forbidden (403)

CSRF verification failed. Request aborted.

Help

Reason given for failure:

 CSRF token missing or incorrect.

 Every form should satisfy CSRF (Cross Site Request Forgery) Verification, otherwise Django won't

accept our form data with POST method request.

 It is meant for website security. Being a programmer we are not required to worry anything about this.

 Django will takes care everything. But to over come this above problem then we have to add

csrf_token in our <form> like {% csrf_token %}

For example:

<div class="container" align="center">

 <form method="post">

 {% csrf_token %}

 {{form.as_p}}

 <input type="submit" class="btn btn-primary" name="" value="Submit">

 </form>

</div>

 NOTE: If we add csrf_token then in the generate form will have following hidded field added, which

makes our post request more secure.

<input type='hidden' name='csrfmiddlewaretoken'

value='1ZqIJJqTLMVa6RFAyPJh7pwzyFmdiHzytLxJIDzAkKULJz4qHcetLoKEsRLwyz4h'/>

 The value of this hidden field is keep on changing from request to request. Hence it is impossible to

forgery of our request.

 Note: If we configured csrf_token in html form then only django will accept our form.

How to process input data from the form inside views.py file:
 We required to modify views.py file. The end user provided input is available in a dictionary named

with 'cleaned_data'

 Now open views.py and create below view

def EmployeeView(request):
 if request.method == 'POST':
 form = EmployeeForm(request.POST)
 if form.is_valid():
 print('Form validation success and printing data')

 print('Employee Name:', form.cleaned_data['ename'])
 print('Employee Salary:', form.cleaned_data['salary'])
 print('Employee mobile:', form.cleaned_data['mobile'])
 print('Employee Address:', form.cleaned_data['address'])
 else:
 return HttpResponse('Form data not validated')
 else:
 form = forms.EmployeeForm()
 return render(request,'employeeapp/employee_form.html',{'form':form})

 Open urls.py file and create the required urls to execute the required views

from employeeapp import views

urlpatterns = [
 '------',
 path('employee_create/', views.EmployeeView)

 '------'
]

 Now execute the runserver command and execute url from browser like below

 Now Enter required data and submit data then we will get like below on python console

Output:

