
TUPLE- DATA Type :
 Tuple is used to represent a set of homogeneous or heterogeneous elements

into a single entity.

 Tuple objects are immutable that means once if we create a tuple object

later we cannot modify those tuple elements.

 All elements are separated by commas (,) and enclosed by parentheses.

Parentheses are optional. ()

 Tuple allows duplicate elements.

 Every element in the tuple has its own index number

 Tuple supports both forward indexing and also backward indexing, forward

indexing starts from 0 and backward indexing starts from -1.

 If we take only one element in the tuple then we should use comma (,) after

that single element.

 t = (10,) --->> tuple type

 t1 = (10) --->> int type

 Tuples can be used as keys to the dictionary.

 We can create a tuple in different ways, like with tuple(), with () or without ()

also.

 The main difference between lists and tuples is- Lists are enclosed in square

brackets like [] and their elements and size can be changed, while tuples are

enclosed in parentheses like () and their elements and size cannot be

updated.

Creating a tuple with tuple() :

>>> tup = tuple([10,20,30,True,'Python'])

>>> print(tup) (10, 20, 30, True, 'Python')

>>> type(tup) <class 'tuple'>

>>> id(tup) 52059760

Creating an empty tuple:

Example:

>>> tup = () #creating empty tuple

>>> print(tup) ()

>>> type(tup) <class 'tuple'>

>>> id(tup) 23134256

Creating a tuple with ()

Example:

>>> tup2 = (10,20,30,40,50) #creating homogeneous tuple

>>> print(tup2) (10, 20, 30, 40, 50)

>>> type(tup2) <class 'tuple'>

>>> id(tup2) 63484864

Creating a tuple without ()

Example:

>>> tup = 10,20,True,'Py' #creating tuple without parenthesis

>>> print(tup) (10, 20, True, 'Py')

>>> type(tup) <class 'tuple'>

>>> id(tup) 67086688

Creating a tuple with heterogeneous elements

Example:

>>> tup1 = (10,20,30,True,"Python",10.5,3+5j) #creating heterogeneous tuple

>>> print(tup1)

(10, 20, 30, True, 'Python', 10.5, (3+5j))

Creating a tuple with homogeneous elements

Example:

>>> t = (10,20,30,40) # creating homogeneous tuple

>>> print(t) # (10,20,30,40)

NOTE : tuple with Single value

 Creating a tuple with a single element is tricky, if we take only one element

then the type of that tuple will be based on specified element type.

>>> t2 = (1)

>>> t2 1

>>> type(t2) <type 'int'>

>>> t2 = (True)

>>> print(t2) True

>>> type(t2) <type 'bool'>

>>> t2 = ('a')

>>> print(t2) 'a'

>>> type(t2) <type 'str'>

Solution :

So to solve the above problem we should use comma (,) after the element in the

tuple if tuple contains single element.

For example:

>>> t2=(1,)

>>> print(t2) (1,)

>>> type(t2) <type 'tuple'>

>>> t2=(False,)

>>> print(t2) (False,)

>>> type(t2) <type 'tuple'>

>>> t2 = ('a')

>>> print(t2) ('a',)

>>> type(t2) <type 'tuple'>

Tuple Indexing:

Tuple indexing is nothing but fetching a specific element from the existing tuple by

using its index value.

Tuple Slicing:

Tuple slicing is nothing but fetching a sequence of elements from the existing tuple

by using their index values.

Example:

>>>tup = (10,20,30,True,"Python",10.5,3+5j,10)

>>> print(tup) # (10, 20, 30, True, 'Python', 10.5, (3+5j), 10)

>>> type(tup) # <class 'tuple'>

 0 1 2 3 4 5 6 7

tup = (10, 20, 30, True, "Python", 10.5, 3+5j, 10)

 -8 -7 -6 -5 -4 -3 -2 -1

>>> tup[0:4] (10, 20, 30, True)

>>> tup[0:0] ()

>>> tup[0:1] (10,)

>>> tup[0:5] (10, 20, 30, True, 'Python')

>>> tup[3:5] (True, 'Python')

>>> tup[2:-2] (30, True, 'Python', 10.5)

>>> tup[-5:-2] (True, 'Python', 10.5)

>>> tup[-5:] (True, 'Python', 10.5, (3+5j), 10)

>>> tup[6:] ((3+5j), 10)

Tuple concatenation :

 We can concatenate two or more tuples in python.

Example:

>>> tup1=(1,2,3,'a',True) #creating first tuple tup1

>>> print(tup1) (1, 2, 3, 'a', True)

>>> type(tup) <class 'tuple'>

>>> tup2=(10,20,False,'b') #creating second tuple tup2

>> print(tup2) (10, 20, False, 'b')

>>> type(tup2) <class 'tuple'>

>>> tup3 = tup1+tup2 #concatenating tup1 and tup2 as tup3

>>> print(tup3) (1, 2, 3, 'a', True, 10, 20, False, 'b')

>>> type(tup3) <class 'tuple'>

Tuple multiplication or repetition :

 We can multiply or repeat a tuple n number of times.

>>> tup1=(1,2,3,'a',True)

>>> print(tup1) (1, 2, 3, 'a', True)

>>> type(tup1) <class 'tuple'>

>>> tup1*3

(1, 2, 3, 'a', True, 1, 2, 3, 'a', True, 1, 2, 3, 'a', True)

Tuple Data type Methods :

1. len():

 This function returns no.of elements in the tuple.

>>> tup = (1,2,3,4,'a',5.5)

>>> len(tup) 6

2. count():

 This function counts the number of occurences of a specific elements.

 This function takes exactly one argument like element.

Example:

>>> tup = (1,10,20,True,0)

>>> tup.count(1) 2

>>> tup.count(0) 1

3. index(object, index_value,end_index):

 This function is used to find the index value of specific|given element.

 This function returns by default first occurence of given element index_value.

 It is also accepts the second parameter as index value, it is used for from

where you want search the given index. By default index_value starts from

zero.

Example:

>>> tup=(1,10,20,True,0)

>>> tup.index(0) 4

>>> tup.index(10) 1

>>> tup.index(20) 2

4. max():

 This function returns maximum value from the tuple elements.

Example:

>>> tup=(1,3,2,55,3,5,23)

>>> max(tup) 55

5. min():

 This function returns minimum value from the tuple elements.

Example:

>>> tup=(1,3,2,55,3,5,23)

>>> min(tup) 1

6. sum():

 this function returns sum of all the elements.

Example:

>>> tup=[1,9,5,11,2]

>>> sum(tup) 28

7. sorted(object):

 sorted() is going to take the elements from given object and arranging all the

elements by default in a assending order.

 after arranging all the elements in assending order then resoult store in a

new variable.

 sorted() method is not doing any changes in a original object and the result

store in a new object.

 sorted() method returns result in a list format by defalt.

 if you want to get in tuple format then use tuple() method

Example:

>>> tup = (1,3,2,55,3,5,23)

>>> sorted(tup) [1, 2, 3, 3, 5, 23, 55]

Note: by default this function sorts the data in ascending order. We can also get in

descending order by setting True for reverse.

Example:

>>> tup=(1,3,2,55,3,5,23)

>>> sorted(tup,reverse=True) [55, 23, 5, 3, 3, 2, 1]

Or

>>> t1 = tuple([1,2,3,7,4])

>>> t1 (1, 2, 3, 7, 4)

>>> t2 = reversed(t1)

>>> tuple(t2) (4, 7, 3, 2, 1)

8. reversed():

 reversed() is going to take the elements from given object and arranging all

the elements by default in a reversing order.

 after arranging all the elements in reversing order then resoult store in a

new variable.

 reversed() method is not doing any changes in a original object and the result

store in a new object.

 reversed() method returns result in a <reversed object at 0x03EFFC30>

format by defalt. Internally elements are reversed.

 if you want to get in tuple format then use tuple() method

>>> t = (10, 40, 60, 20)

>>> t2 = reversed(t)

>>> t2

<reversed object at 0x03EFFC30>

>>> tuple(t2) # (20, 60, 40, 10)

Note:

 tuple object is not supporting both sort() and reverse() and copy() and clear()

also.

>>> t = (10, 40, 60, 20)

>>> t2 = sort(t)

NameError: name 'sort' is not defined

>>> t3 = reverse(t)

NameError: name 'reverse' is not defined

>>> t = (10, 40, 60, 20)

>>> id(t) # 65890704

>>> t2 = t

>>> print(t2) # (10, 40, 60, 20)

>>> id(t8) # 65890704

>>> t2 = t.copy()

AttributeError: 'tuple' object has no attribute 'copy'

DEL Command :

We cannot delete the elements of existing tuple but we can delete the entire tuple

object by using del command.

Example:

>>> tup = (10,20,"Python",1.3)

>>> print(tup) # (10, 20, 'Python', 1.3)

>>> type(tup) # <class 'tuple'>

>>> del tup # deleting tuple by using del command.

>>> print(tup) # after deleting

NameError: name 'tup' is not defined

We can replace the elements of list but not tuple, like

>>> lst=[10,20,30,'Py',True]

>>> lst[4]=False # it is possible in list

>>> print(lst) [10, 20, 30, 'Py', False]

>>> tup = (10,20,30,'Py',True)

>>> tup[4]=False # it is not possible in tuple

TypeError: 'tuple' object does not support item assignment

Tuple packing:

 We can create a tuple by using existing variables, so its called tuple packing.

>>> a=10

>>> b=20

>>> c='Python'

>>> d=2+5j

>>> tup=(a,b,c,d)

>>> print(tup) (10, 20, 'Python', (2+5j))

>>> type(tup) <class 'tuple'>

>>> id(tup) 62673808

Tuple Unpacking

 Tuple unpacking allows to extract tuple elements automatically.

 Tuple unpacking is the list of variables on the left has the same number of

elements as the length of the tuple

>>> tup=(1,2,3,4)

>>> a,b,c,d=tup # tuple unpacking

>>> print(a) 1

>>> print(b) 2

>>> print(c) 3

>>> print(d) 4

Nested tuple:

 Python supports nested tuple, means a tuple in another tuple.

 Tuple allows list as its element.

Example:

>>> t1=(1,'a',True)

>>> print(t1) (1, 'a', True)

>>> type(t1) <class 'tuple'>

>>> t2=(10,'b',False)

>>> print(t2) (10, 'b', False)

>>> type(t2) <class 'tuple'>

>>> t3=(t1,100,'Python',t2) # creating a tuple with existing tuples t1 and t2

>>> print(t3) ((1, 'a', True), 100, 'Python', (10, 'b', False))

>>> type(t3) <class 'tuple'>

>>> print(t3[0]) (1, 'a', True)

>>> print(t3[1]) 100

>>> print(t3[2]) Python

>>> print(t3[3]) (10, 'b', False)

>>> print(t3[3][0]) 10

>>> print(t3[3][1]) b

>>> print(t3[3][2]) False

>>> print(t3[0][0]) 1

>>> print(t3[0][1]) a

>>> print(t3[0][2]) True

>>> t3[0:2] ((1, 'a', True), 100)

>>> t3[2:4] ('Python', (10, 'b', False))

>>> t3[-2:4] ('Python', (10, 'b', False))

Note:

 We can’t modify any element of the above tuples because tuples are

immutable.

 If the tuple contains a list as a element then we can modify the elements of

the list as it a mutable object.

Example:

>>> tup = (1,2,[10,12,'a'],(100,200,300),3,'Srinivas')

>>> print(tup) # (1, 2, [10, 12, 'a'], (100, 200, 300), 3, 'Srinivas')

>>> tup[0] 1

>>> tup[1] 2

>>> tup[2] [10, 12, 'a']

>>> tup[3] (100, 200, 300)

>>> tup[4] 3

>>> tup[5] 'Srinivas'

>>> tup[0]=50

trying to replace element 1 with 50, interpreter throws error.

 TypeError: 'tuple' object does not support item assignment

>>> tup[2][0]=50

 # trying to replace element of list 10 with 50, interpreter accepts.

>>> print(tup) (1, 2, [50, 12, 'a'], (100, 200, 300), 3, 'Srinivas')

Converting tuple to list :

>>> tup=(1,2,4,9,8) #creating a tuple

>>> print(tup) (1, 2, 4, 9, 8)

>>> type(tup) <class 'tuple'>

>>> lst = list(tup) # converting tuple to list by using list()

>>> print(lst) [1, 2, 4, 9, 8]

>>> type(lst) <class 'list'>

Converting list to tuple:

>>> lst=[10,20,30,40,'a'] #creating a list

>>> print(lst) [10, 20, 30, 40, 'a']

>>> type(lst) <class 'list'>

>>> tup=tuple(lst) #converting list to tuple by using tuple()

>>> print(tup) (10, 20, 30, 40, 'a')

>>> type(tup) <class 'tuple'>

Converting tuple to string:

>>> tup=('a','b','c') #creating tuple

>>> print(tup) ('a', 'b', 'c')

>>> type(tup) <class 'tuple'>

>>> str1=''.join(tup) #converting tuple to string by using join method

>>> print(str1) abc

>>> type(str1) <class 'str'>

Converting string to tuple:

>>> str1="Python Srinivas" #creating a string

>>> print(str1) Python Srinivas

>>> type(str1) <class 'str'>

>>> tup=tuple(str1) #converting a string by using tuple function.

>>> print(tup)

('P', 'y', 't', 'h', 'o', 'n', ' ', 'S', 'r', 'i', 'n', 'i', 'v', 'a', 's')

>>> type(tup) <class 'tuple'>

Note:

>>> t = ("a","b","c",10)

>>> ''.join(t)

TypeError: sequence item 3: expected str instance, int found

Advantages of Tuple over List:

• Generally we use tuple for heterogeneous elements and list for homogeneous

elements.

• Iterating through tuple is faster than list because tuples are immutable, So there

might be a slight performance boost.

• Tuples can be used as key for a dictionary. With list, this is not possible because

list is a mutable object.

• If you have data that doesn't change, implementing it as tuple will guarantee

that it remains write-protected.

