
Database Examples:
Q. How to create the MySQL connection object using Python script?

import pymysql

connection_obj = pymysql.connect(host='localhost',user='root',password='root')

print(connection_obj)

Q. How to create the MySQL cursor object using Python script?

import pymysql

connection_obj = pymysql.connect(host='localhost',user='root',password='root')

cursor_obj = connection_obj.cursor()

print(cursor_obj)

Q. How to show all available databases from MySQL DB using Python script?

import pymysql

connection_obj = pymysql.connect(host='localhost',user='root',password='root')

cursor_obj = connection_obj.cursor()

sql = cursor_obj.execute('show databases')

print(sql) # returns count of total dbs

displays all dbs from cursor_obj

for db in cursor_obj:

 print(db)

Q. How to create a new database using Python script?

import pymysql

connection_obj = pymysql.connect(host='localhost',user='root',password='root')

cursor_obj = connection_obj.cursor()

sql = cursor_obj.execute('create database python_db2')

print(sql) # 1 returns

print('database created successfully.')

Note : If database already created then we will get error like bellow.

pymysql.err.ProgrammingError: (1007, "Can't create database 'python_db2';

database exists")

Q. How to use existing database using Python script?

import pymysql

mydb = pymysql.connect(

 host="localhost",

 user="myusername",

 password="mypassword",

 database="mydatabase"

)

Q. How to show tables from current db?

import pymysql

mydb = pymysql.connect(

 host="localhost",

 user="myusername",

 password="mypassword",

 database="mydatabase"

)

cur_obj = mydb.cursor()

sql = 'show tables;'

cur_obj.execute(sql)

for table in cur_obj:

 print(table)

Q. How to select data from a table?

#step1 -->> Import the required database connector module

import pymysql

#step2 --->> creating database conncection object

connection_object = pymysql.connect(

 host='localhost',

 user='root',

 password='root',

 database='mypython_db'

)

print(connection_object)

#step3 --->> create the cursor object

cursor_object = connection_object.cursor()

print(cursor_object)

#step4 --->> create the required sql queries

sql = 'select * from customers2;'

#step5 --->> execute the sql queries using execute() of cursor_object

cursor_object.execute(sql)

#step6 --->> access the data from cursor object and display it.

for row in cursor_object:

 for col in row:

 print(col,end=' ')

 print()

Creating a Table :

--->> To create a table in MySQL, use the "CREATE TABLE" statement.

mysql> CREATE TABLE customers (name VARCHAR(255), address VARCHAR(255))

Q. How to create a table using Python Script?

import the MYSQL connector|driver module

import pymysql

creating the database connection object

connecton_object = pymysql.connect(

 host='localhost',

 user='root',

 password='root',

 database='mypython_db'

)

print(connecton_object)

How to create the Cursor object

cursor_object = connecton_object.cursor()

print(cursor_object)

create the required sql query for executing

sql = 'CREATE TABLE customers (name VARCHAR(255), address VARCHAR(255))'

how to execute the sql queries.

cursor_object.execute(sql)

print('table created successfully.')

Q. How to show the available tables from current db ?

import the MYSQL connector|driver module

import pymysql

creating the database connection object

connecton_object = pymysql.connect(

 host='localhost',

 user='root',

 password='root',

 database='mypython_db'

)

print(connecton_object)

How to create the Cursor object

cursor_object = connecton_object.cursor()

print(cursor_object)

create the required sql query for executing

sql = 'show tables;'

how to execute the sql queries.

cursor_object.execute(sql)

display the tables from cursor object.

for db in cursor_object:

 print(db)

Q. How to create a primary key value for our table?

Primary Key:

When creating a table, you should also create a column with a unique key for each

record.

This can be done by defining a PRIMARY KEY.

We use the statement "INT AUTO_INCREMENT PRIMARY KEY" which will insert a

unique number for each record. Starting at 1, and increased by one for each

record.

code:

sql = "CREATE TABLE customers2 (id INT AUTO_INCREMENT PRIMARY KEY,

name VARCHAR(255), address VARCHAR(255))"

How to execute the sql queries.

cursor_object.execute(sql)

Insert Into Table :

The INSERT INTO statement is used to insert new records in a

table.

Insert a record in the "customers" table:

Example:

import the MYSQL connector|driver module

import pymysql

creating the database connection object

connecton_object = pymysql.connect(

 host='localhost',

 user='root',

 password='root',

 database='mypython_db'

)

print(connecton_object)

How to create the Cursor object

cursor_object = connecton_object.cursor()

print(cursor_object)

sql = "INSERT INTO customers2 (name, address) VALUES (%s, %s)"

val = ("John", "Highway 21")

how to execute the sql queries.

cursor_object.execute(sql,val)

connecton_object.commit() # to save perminatly into database

print(cursor_object.rowcount, "record inserted.")

Important!:

Notice the statement: connecton_object.commit(). It is required to make the

changes, otherwise no changes are made to the table.

Fill the "customers" table with data:

Select From a Table:

To select from a table in MySQL, use the "SELECT" statement:

Select all records from the "customers" table, and display the result:

Example:

import pymysql

mydb = pymysql.connect(

 host="localhost",

 user="root",

 password="root",

 database="mypython_db"

)

mycursor = mydb.cursor()

mycursor.execute("SELECT * FROM customers2")

myresult = mycursor.fetchall()

for x in myresult:

 print(x)

Note: We use the fetchall() method, which fetches all rows from the last executed

statement.

Selecting Columns to select only some of the columns in a table, use the "SELECT"

statement followed by the column name(s):

mycursor.execute("SELECT name, address FROM customers")

Using the fetchone() Method

If you are only interested in one row, you can use the fetchone() method.

The fetchone() method will return the first row of the result.

Example:

mycursor.execute("SELECT * FROM customers")

myresult = mycursor.fetchone()

Select With a Filter

When selecting records from a table, you can filter the selection by using the

"WHERE" statement.

sql = "SELECT * FROM customers WHERE address ='Park Lane 38'"

Update Table

You can update existing records in a table by using the "UPDATE" statement:

sql = "UPDATE customers SET address = 'Canyon 123' WHERE address = 'Valley

345'"

Important!:

Notice the statement: mydb.commit(). It is required to make the changes,

otherwise no changes are made to the table.

Notice the WHERE clause in the UPDATE syntax:

The WHERE clause specifies which record or records that should be updated. If you

omit the WHERE clause, all records will be updated!

Delete Record

You can delete records from an existing table by using the "DELETE FROM"

statement:

sql = "DELETE FROM customers WHERE address = 'Mountain 21'"

Limit the Result

You can limit the number of records returned from the query, by using the "LIMIT"

statement.

Example:

mycursor.execute("SELECT * FROM customers LIMIT 5")

myresult = mycursor.fetchall()

for x in myresult:

 print(x)

Start From Another Position:

If you want to return five records, starting from the third record, you can use the

"OFFSET" keyword.

Start from position 3, and return 5 records.

Example:

mycursor.execute("SELECT * FROM customers LIMIT 5 OFFSET 2")

myresult = mycursor.fetchall()

for x in myresult:

 print(x)

Where Clause:

The WHERE clause is used to filter records. It is used to extract only

those records that fulfill a specified condition.

WHERE Syntax:

SELECT column1, column2, ...
FROM table_name
WHERE condition;

Note: The WHERE clause is not only used in SELECT statements, it is

also used in UPDATE, DELETE, etc.!

mysql> SELECT * FROM Customers WHERE Country = 'Mexico';

Text Fields vs. Numeric Fields

SQL requires single quotes around text values (most database

systems will also allow double quotes).

However, numeric fields should not be enclosed in quotes:

Example

mysql> SELECT * FROM Customers WHERE CustomerID = 1;

Operators in The WHERE Clause

The following operators can be used in the WHERE clause:

For example, = , > , < , >= , <= , != , between , in , not in ,

like , etc ….

Examples:

mysql> SELECT * FROM Products WHERE Price = 20;

mysql> SELECT * FROM Products WHERE Price < 20;

mysql> SELECT * FROM Products WHERE Price <= 20;

mysql> SELECT * FROM Products WHERE Price like '2%';

mysql> SELECT * FROM Products WHERE Price in (18,25);

mysql> SELECT * FROM Products WHERE Price not in (18,25);

mysql> SELECT * FROM Products WHERE Price like '2%';

mysql> SELECT * FROM Products WHERE Price BETWEEN 20 AND 30;

The MySQL AND, OR and NOT Operators

The WHERE clause can be combined with AND, OR, and NOT operators.

The AND and OR operators are used to filter records based on more

than one condition:

 The AND operator displays a record if all the conditions

separated by AND are TRUE.

 The OR operator displays a record if any of the conditions

separated by OR is TRUE.

The NOT operator displays a record if the condition(s) is NOT TRUE.

AND Syntax

mysql> SELECT column1, column2, ... FROM table_name WHERE
condition1 AND condition2 AND condition3 ...;

OR Syntax

mysql> SELECT column1, column2, ... FROM table_name WHERE
condition1 OR condition2 OR condition3 ...;

NOT Syntax

mysql> SELECT column1, column2, ... FROM table_name
WHERE NOT condition;

The MySQL ORDER BY Keyword

The ORDER BY keyword is used to sort the result-set in ascending

or descending order.

The ORDER BY keyword sorts the records in ascending order by

default. To sort the records in descending order, use

the DESC keyword.

ORDER BY Syntax

mysql> SELECT column1, column2, ... FROM table_name
ORDER BY column1, column2, ... ASC|DESC;
Example:
mysql> SELECT * FROM Customers ORDER BY Country;
mysql> SELECT * FROM Customers ORDER BY Country DESC;

ORDER BY Several Columns Example

The following SQL statement selects all customers from the

"Customers" table, sorted by the "Country" and the

"CustomerName" column. This means that it orders by Country,

but if some rows have the same Country, it orders them by

CustomerName:

Example:

mysql> SELECT * FROM Customers ORDER BY Country,
CustomerName;

The MySQL INSERT INTO Statement

The INSERT INTO statement is used to insert new records in a

table.

INSERT INTO Syntax

It is possible to write the INSERT INTO statement in two ways:

1. Specify both the column names and the values to be inserted:

mysql> INSERT INTO table_name (column1, column2, column3,
...)
VALUES (value1, value2, value3, ...);

2. If you are adding values for all the columns of the table, you do

not need to specify the column names in the SQL query. However,

make sure the order of the values is in the same order as the

columns in the table. Here, the INSERT INTO syntax would be as

follows:
INSERT INTO table_name
VALUES (value1, value2, value3, ...);

Write a SQL statement to inserts a new record in the

"Customers" table:
mysql> INSERT INTO Customers (CustomerName, ContactName,
Address, City, PostalCode, Country)
VALUES ('Cardinal', 'Tom B. Erichsen', 'Skagen
21', 'Stavanger', '4006', 'Norway');

The selection from the "Customers" table will now look like this:

Note: It is also possible to only insert data in specific

columns.

The following SQL statement will insert a new record, but only

insert data in the "CustomerName", "City", and "Country" columns

(CustomerID will be updated automatically):

Example:

mysql> INSERT INTO Customers (CustomerName, City, Country)
VALUES ('Cardinal', 'Stavanger', 'Norway');

The selection from the "Customers" table will now look like this:

The MySQL UPDATE Statement

The UPDATE statement is used to modify the existing records in a

table.

UPDATE Syntax

UPDATE table_name
SET column1 = value1, column2 = value2, ...
WHERE condition;

Note: Be careful when updating records in a table! Notice

the WHERE clause in the UPDATE statement. The WHERE clause

specifies which record(s) that should be updated. If you omit

the WHERE clause, all records in the table will be updated!

Demo Database

Below is a selection from the "Customers" table in the Northwind

sample database:

UPDATE Table

The following SQL statement updates the first customer

(CustomerID = 1) with a new contact person and a new city.
Example:
mysql> UPDATE Customers SET ContactName = 'Alfred Schmidt',
City = 'Frankfurt'
WHERE CustomerID = 1;

The selection from the "Customers" table will now look like this:

UPDATE Multiple Records

It is the WHERE clause that determines how many records will be

updated.

The following SQL statement will update the PostalCode to 00000

for all records where country is "Mexico":

Example:

UPDATE Customers SET PostalCode = 00000 WHERE Country
= 'Mexico';

The selection from the "Customers" table will now look like this:

Update Warning!

Be careful when updating records. If you omit the WHERE clause,

ALL records will be updated!

Example:
UPDATE Customers SET PostalCode = 00000;

The selection from the "Customers" table will now look like this:

The MySQL DELETE Statement

The DELETE statement is used to delete existing records in a table.

DELETE Syntax

DELETE FROM table_name WHERE condition;

Note: Be careful when deleting records in a table! Notice

the WHERE clause in the DELETE statement. The WHERE clause

specifies which record(s) should be deleted. If you omit

the WHERE clause, all records in the table will be deleted!

Demo Database

Below is a selection from the "Customers" table in the Northwind

sample database:

SQL DELETE Example

The following SQL statement deletes the customer "Alfreds

Futterkiste" from the "Customers" table:

Example:

mysql> DELETE FROM Customers WHERE CustomerName='Alfreds
Futterkiste';

The "Customers" table will now look like this:

Delete All Records

It is possible to delete all rows in a table without deleting the

table. This means that the table structure, attributes, and indexes

will be intact:

DELETE FROM table_name;

The following SQL statement deletes all rows in the "Customers"

table, without deleting the table:

Example:

mysql> DELETE FROM Customers;

The MySQL LIMIT Clause

The LIMIT clause is used to specify the number of records to

return.

The LIMIT clause is useful on large tables with thousands of

records. Returning a large number of records can impact

performance.

LIMIT Syntax

SELECT column_name(s) FROM table_name WHERE condition
LIMIT number;

MySQL LIMIT Examples

The following SQL statement selects the first three records from

the "Customers" table:
Example:
mysql> SELECT * FROM Customers LIMIT 3;

ADD a WHERE CLAUSE

The following SQL statement selects the first three records from

the "Customers" table, where the country is "Germany":
Example:
mysql> SELECT * FROM Customers WHERE Country='Germany'
LIMIT 3;

	WHERE Syntax:
	Text Fields vs. Numeric Fields
	Example

	Operators in The WHERE Clause
	The MySQL AND, OR and NOT Operators
	AND Syntax
	mysql> SELECT column1, column2, ... FROM table_name WHERE condition1 AND condition2 AND condition3 ...;
	OR Syntax
	NOT Syntax

	The MySQL ORDER BY Keyword
	ORDER BY Syntax

	ORDER BY Several Columns Example
	The MySQL INSERT INTO Statement
	INSERT INTO Syntax

	The MySQL UPDATE Statement
	UPDATE Syntax

	Demo Database
	Below is a selection from the "Customers" table in the Northwind sample database:
	UPDATE Table
	UPDATE Multiple Records
	Update Warning!
	The MySQL DELETE Statement
	DELETE Syntax

	Demo Database (1)
	SQL DELETE Example
	Delete All Records
	The MySQL LIMIT Clause
	LIMIT Syntax

	MySQL LIMIT Examples
	ADD a WHERE CLAUSE

