
REGULAR EXPRESSION Concept :

 Regular Expressions are used to extract the required information from the

given data by following patterns.

 Regular expressions are also used to check whether the given input data is in

proper foramt or not.

 example : email Id verification, mobile number verification,password

verification.

 The regular expressions which are supported by the 'pearl' are also

supported by the python.

 Python is providing the built-in- functions to work with the regular

expression easily.

 All the predefined functions which are related to regular expression are

present in "re" module.

Special characters which are used in regular expression are :

A Regular Expression (RegEx) is a sequence of characters that defines a

search pattern. For example,

^a...s$

The above code defines a RegEx pattern. The pattern is: any five letter

string starting with a and ending with s.

A pattern defined using RegEx can be used to match against a string.

Python has a module named re to work with RegEx. Here's an example:

import re
pattern = '^a...s$'
test_string = input('enter any string :')
result = re.match(pattern, test_string)

if result:
 print("Search successful.")
else:
 print("Search unsuccessful.")

Output 1:

Output 2:

Here, we used re.match() function to search pattern within

the test_string. The method returns a match object if the search is

successful. If not, it returns None.

Specify Pattern Using RegEx

To specify regular expressions, metacharacters are used. In the above

example, ^ and $ are metacharacters.

MetaCharacters

Metacharacters are characters that are interpreted in a special way by a

RegEx engine. Here's a list of metacharacters:

[] . ^ $ * + ? {} () \ |

[] - Square brackets

Square brackets specifies a set of characters you wish to match.

Here, [abc] will match if the string you are trying to match contains any of

the a, b or c.

You can also specify a range of characters using - inside square

brackets.

 [a-e] is the same as [abcde].

 [1-4] is the same as [1234].

 [0-39] is the same as [01239].

You can complement (invert) the character set by using

caret ^ symbol at the start of a square-bracket.

 [^abc] means any character except a or b or c.

 [^0-9] means any non-digit character.

. – Period

A period matches any single character (except newline '\n').

^ - Caret

The caret symbol ^ is used to check if a string starts with a certain

character.

$ - Dollar

The dollar symbol $ is used to check if a string ends with a certain

character.

* - Star

The star symbol * matches zero or more occurrences of the pattern left to

it.

+ - Plus

The plus symbol + matches one or more occurrences of the pattern left to

it.

? - Question Mark

The question mark symbol ? matches zero or one occurrence of the

pattern left to it.

{} - Braces

Consider this code: {n,m}. This means at least n, and at most m repetitions

of the pattern left to it.

Let's try one more example. This RegEx [0-9]{2, 4} matches at least 2

digits but not more than 4 digits

| - Alternation

Vertical bar | is used for alternation (or operator).

Here, a|b match any string that contains either a or b

() - Group

Parentheses () is used to group sub-patterns. For

example, (a|b|c)xz match any string that matches

either a or b or c followed by xz

\ - Backslash

Backlash \ is used to escape various characters including all

metacharacters. For example,

\$a match if a string contains $ followed by a. Here, $ is not interpreted by

a RegEx engine in a special way.

If you are unsure if a character has special meaning or not, you can put \ in

front of it. This makes sure the character is not treated in a special way.

Special Sequences

Special sequences make commonly used patterns easier to write. Here's a

list of special sequences:

\A - Matches if the specified characters are at the start of a string.

\b - Matches if the specified characters are at the beginning or end of a

word.

\B - Opposite of \b. Matches if the specified characters are not at the

beginning or end of a word.

\d - Matches any decimal digit. Equivalent to [0-9]

\D - Matches any non-decimal digit. Equivalent to [^0-9]

\s - Matches where a string contains any whitespace character. Equivalent

to [\t\n\r\f\v].

\w - Matches any alphanumeric character (digits and alphabets). Equivalent

to

[a-zA-Z0-9_]. By the way, underscore _ is also considered an

alphanumeric character.

\W - Matches any non-alphanumeric character. Equivalent to [^a-zA-Z0-

9_]

\Z - Matches if the specified characters are at the end of a string.

Some special charecters :

[0-9] --------> Any single digit

[a-z] --> Any one lower case alphabet

[A-Z] ---> Any one of upper case alphabet

[a-Az-Z] --> Any one alphabet

 [a-zA-Z0-9] --> Any one alphanumeric

[^0-9]---> Any single non digit

 [^A-Z]---> Any one non uppercase alphabet

 [^a-z]---> Any one non lowercase alphabet

 [^a-zA-Z]---> Any one non alphabet

[^a-zA-z0-9-]---> Any one non alphanumeric

(|)---> It matches any one string in the list

 EX: (java | hadoop | python)

 .net # error

 python # True

{ m } ------->It matches exact occurance of preceding character

 EX: ab{ 3 }c

 abbbc # True

 abc # error

 abbc # error

{ m , n } ----->It matches minimum "m" occurances and maximum "n"

occurances of preceding character.

 EX: Ab{ 3 , 5 }c

 Abbc # error

 abbbc

{ m , } ------> It matches minimum "m" occurances and maximum no limit of

preceding character.

 EX: Ab{ 3 , }c

 Abc # error

 abbbc

 abbbbc

{ , m } ---->> maximum 3 times and minimum no limit

\d or [0-9] --------> Matches digits. Equivalent to [0-9]. (Any single digit)

 Example: [0-9][0-9] or [0-9]{4} or \d \d \d\d or \d{4}

\D or [*0-9] ------> Matches nondigits. (Any single non digit)

\w or [a-zA-z0-9]--> Matches word characters. (any alphanumeric)

\W or [^a-zA-z0-9-]---> Matches nonword characters.

\s ---->> matches any empty spaces

\S ---->> Matches nonwhitespace.

\A ----->> Matches beginning of string.

\z ------>> Matches end of string.

Raw strings

Methods in re module use raw strings as the pattern argument. A raw string

is having prefix 'r' or 'R' to the normal string literal.

>>> normal="computer"

>>> print (normal)

computer

>>> raw=r"computer"

>>> print (raw)

computer

Both strings appear similar. The difference is evident when the string

literal embeds escape characters ('\n', '\t' etc.)

>>> normal="Hello\nWorld"

>>> print (normal)

Hello

World

>>> raw=r"Hello\nWorld"

>>> print (raw)

Hello\nWorld

In case of normal string, the print() function interprets the escape character.

In this case '\n' produces effect of newline character.

However because of the raw string operator 'r' the effect of escape

character is not translated as per its meaning. The output shows actual

construction of string not treating '\n' as newline character.

Regular expressions use two types of characters in the matching pattern

string: Meta characters are characters having a special meaning, similar to *

in wild card. Literals are alphanumeric characters.

	Specify Pattern Using RegEx
	MetaCharacters
	Raw strings

