
String Handling Concept:
 A group/sequence of characters is called String.

 Python supports str data type to represent string type data.

 String objects are immutable objects that mean we can’t modify the existing

string object.

 Insertion order is preserved in string objects.

 Every character in the string object is represented with unique index.

 Python supports both forward and backward indexes.

 Forward index starts with 0 and negative index starts with -1

 Python string supports both "concatenation" and "multiplication" of string

objects.

 Strings can be created by enclosing characters inside a single quote or double

quotes. Even triple quotes can be used in Python but generally used to

represent multiline strings and docstrings.

Quotations in Python:

 Python accepts single ('), double (") and triple (''' or """) quotes to denote

string literals, as long as the same type of quote starts and ends the string.

 Generally triple quotes are used to write the string across multiple lines. For

example, all the following are legal.

For example1 :

word = 'word'

sentence = "This is a sentence."

Paragraph = """This is a paragraph. It is

 made up of multiple lines and sentences."""

Example :

 0 1 2 3 4 5 6 7

 s = S r i n i v a s

 -8 -7 -6 -5 -4 -3 -2 -1

 If the given index is not available in the string we will get exception like

IndexError

 >>> s[8]

IndexError: string index out of range.

 If we try to modify the content of string object by using index we will get the

TypeError

 >>> s[2] = 'x'

 TypeError: 'str' object does not support item assignment

String Slicing :

 column(:) is a slice operator , which is used to extract the require content

from the given string using given index values.

 [startIndex : endIndex] : Here, start index is 0 position and end index is -1

position.

Example:

>>> print(x)

Srinivas

>>> s[:]

Srinivas # Here starts from 0 index and ends with available length

 >>> s[3 :] # 'nivas'

 All ways we can slicing the given string as a forward index position only

otherwise it returns empty string.

 >>> s[4 : -7] # ' '

String indexing:

To access specific value from a given string by using a given index value is called as

indexing.

Syntax: object[indexPosition]

Accessing Values in Strings

>>> s[2] # 'i'

Updating Strings

var1 = 'Hello World!'

print("Updated String :- ", var1[:6] + 'Python')

NOTE :

 We can access individual characters using "indexing" and a range of

characters using "slicing". s[3] , s[2:6]

 Index starts from 0. If we try to access a character out of index range will

raise an IndexError.

>>> s[15]

IndexError: string index out of range

 The index must be an integer. We can't use float or other types, this will

result into TypeError.

>>> s[1.0]

TypeError: string indices must be integers, not 'float'

 The index of -1 refers to the last item, -2 to the second last item and so on.

 We can access a range of items in a string by using the slicing operator

(colon).

 >>> s [2 : 7]

'iniva'

Slicing with step increment:

 Accessing every second character starting from 0 index to end index

>>> s[0 : : 2] # 'Siia'

 Accessing every backword character starting from 4th index to start 0

index

>>> s[4::-1] # 'inirS'

>>> s[6:2:-1] # 'avin'

>>> s[-2:-6:-1] # 'avin'

 >>> s[2 : 6 : -1] # ' '

Concatenation of two or more strings:

 We can concatenate two or more strings into a single one is called

concatenation.

 The + operator is used in Python for concatenation.

Example:

>>> string1 = 'Python'

>>> string2 = 'Developer'

>>> print('String1 + string2 : ', string1 + ' ' + string2)

Output : String1 + string2 : Python Developer

Multiplication of string:

 Python supports multiplying the given string into n number of times.

 The * operator can be used to repeat the string for a given number of

times.

Example:

>>>string1 = 'Python'

>>>print(string1 * 3)

Output : PythonPythonPython

String Unpacking

 String unpacking allows extracting string elements automatically.

 String unpacking is the list of variables on the left has the same number of

elements as the length of the string.

>>> str1="Python"

>>> print(str1) Python

>>> type(str1) <class 'str'>

>>> id(str1) 23941472

>>> a,b,c,d,e,f = str1 # string unpacking

>>> print(a) P

>>> type(a) <class 'str'>

>>> print(b) y

>>> type(b) <class 'str'>

Membership ---->>> in

 It Returns True if a given character exists in the given string

>>> s = "Srinivas"

>>> 'r' in s ----->> True

Membership ---->>> not in

 Returns true if a character does not exist in the given string

>>> ‘S’ in s # True

