
Django Login and Logout Tutorial

In this tutorial, we'll learn how to configure login/logout functionality with Django's built-in user

authentication system. This post is the first in a three-part series that also covers signup and password

reset for a complete user authentication flow in your future Django projects.

This tutorial assumes you're already familiar with configuring a new Django project. If you need help,

please refer to Django for Beginners, which covers the topic in more detail.

Setup

Start by creating a new Django project. This code can live anywhere on your computer. On a Mac, the

Desktop is convenient, and that's where we'll put this code. We can do all of the standard

configuration from the command line:

 create a new django_auth directory for our code on the Desktop

 create a new virtual environment called .venv and activate it

 install Django

 create a new Django project called django_project

 create a new SQLite database with migrate

 run the local server

Here are the commands to run:

Windows
$ cd onedrive\desktop\
$ mkdir django_auth
$ cd django_auth
$ python -m venv .venv
$.venv\Scripts\Activate.ps1
(.venv) $ python -m pip install django~=4.2.0
(.venv) $ django-admin startproject django_project .
(.venv) $ python manage.py migrate
(.venv) $ python manage.py runserver

macOS
$ cd ~/desktop/
$ mkdir django_auth
$ cd django_auth
$ python3 -m venv .venv
$ source .venv/bin/activate
(.venv) $ python3 -m pip install django~=4.2.0
(.venv) $ django-admin startproject django_project .
(.venv) $ python manage.py migrate
(.venv) $ python manage.py runserver

Navigating to http://127.0.0.1:8000, you'll see the Django welcome screen.

https://docs.djangoproject.com/en/4.2/topics/auth/
https://docs.djangoproject.com/en/4.2/topics/auth/
https://learndjango.com/tutorials/django-signup-tutorial
https://learndjango.com/tutorials/django-password-reset-tutorial
https://learndjango.com/tutorials/django-password-reset-tutorial
https://djangoforbeginners.com/initial-setup/

The Django auth app

Django automatically installs the auth app when creating a new project. Look in

the django_project/settings.py file under INSTALLED_APPS, and you can see auth is one of several

built-in apps Django has installed for us.

django_project/settings.py
INSTALLED_APPS = [
 "django.contrib.admin",
 "django.contrib.auth", # Yoohoo!!!!
 "django.contrib.contenttypes",
 "django.contrib.sessions",
 "django.contrib.messages",
 "django.contrib.staticfiles",
]

To use the auth app, we need to add it to our project-level urls.py file. Make sure to add include on

the second line. I've included the auth app at accounts/, but you can use any URL pattern you want.

django_project/urls.py

from django.contrib import admin
from django.urls import path, include # new

urlpatterns = [
 path("admin/", admin.site.urls),
 path("accounts/", include("django.contrib.auth.urls")), # new
]

The auth app we've now included provides us with several authentication views and URLs for handling

login, logout, and password management.

The URLs provided by auth are:

accounts/login/ [name='login']
accounts/logout/ [name='logout']
accounts/password_change/ [name='password_change']
accounts/password_change/done/ [name='password_change_done']
accounts/password_reset/ [name='password_reset']
accounts/password_reset/done/ [name='password_reset_done']
accounts/reset/<uidb64>/<token>/ [name='password_reset_confirm']
accounts/reset/done/ [name='password_reset_complete']

There are associated auth views for each URL pattern, too. That means we only need to create

a template to use each!

Login Page

Let's make our login page! Django, by default, will look within a templates folder

called registration for auth templates. The login template is called login.html.

Create a new directory called templates and another directory called registration within it.

(.venv) $ mkdir templates
(.venv) $ mkdir templates/registration

Then create a templates/registration/login.html file with your text editor and include the following

code:

<!-- templates/registration/login.html -->
<h2>Log In</h2>
<form method="post">
 {% csrf_token %}
 {{ form.as_p }}
 <button type="submit">Log In</button>
</form>

This code is a standard Django form using POST to send data and {% csrf_token %} tags for security

concerns, namely to prevent a CSRF Attack. The form's contents are outputted between paragraph

tags thanks to {{ form.as_p }} and then we add a "submit" button.

Next, update the settings.py file to tell Django to look for a templates folder at the project level.

Update the DIRS setting within TEMPLATES with the following one-line change.

https://docs.djangoproject.com/en/4.2/topics/auth/default/#module-django.contrib.auth.views
https://www.netsparker.com/blog/web-security/csrf-cross-site-request-forgery/

django_project/settings.py
TEMPLATES = [
 {
 ...
 "DIRS": [BASE_DIR / "templates"],
 ...
 },
]

Our login functionality now works, but to improve it, we should specify where to redirect the user

upon a successful login. In other words, where should users be sent to on the site once logged in? We

use the LOGIN_REDIRECT_URL setting to specify this route. At the bottom of the settings.py file, add

the following to redirect the user to the homepage.

django_project/settings.py
LOGIN_REDIRECT_URL = "/"

We are actually done at this point! If you start the Django server again with python manage.py

runserver and navigate to our login page at http://127.0.0.1:8000/accounts/login/, you'll see the

following.

Create users

But there's one missing piece: we still need to create users. Let's quickly make a superuser account

from the command line. Quit the server with Control+c and then run the command python manage.py

createsuperuser. Answer the prompts and note that your password will not appear on the screen

when typing for security reasons.

(.venv) > python manage.py createsuperuser
Username (leave blank to use 'wsv'):
Email address: will@wsvincent.com
Password:
Password (again):
Superuser created successfully.

Now start the server again with python manage.py runserver and refresh the page

at http://127.0.0.1:8000/accounts/login/. Enter the login info for your just-created user.

Our login worked because it redirected us to the homepage, but we still need to create that

homepage, so we see the error Page not found. Let's fix that!

Create a homepage

We want a simple homepage displaying one message to logged-out users and another to logged-in

users. Create two new files with your text editor: templates/base.html and templates/home.html. Note

that these files exist within the templates folder but not within templates/registration/, where

Django auth looks by default for user auth templates.

Add the following code to each:

<!-- templates/base.html -->
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>{% block title %}Django Auth Tutorial{% endblock %}</title>
</head>
<body>
 <main>
 {% block content %}
 {% endblock %}
 </main>
</body>
</html>

<!-- templates/home.html -->
{% extends "base.html" %}

{% block title %}Home{% endblock %}

{% block content %}
{% if user.is_authenticated %}
 Hi {{ user.username }}!
{% else %}
 <p>You are not logged in</p>
 Log In
{% endif %}

{% endblock %}

While we're at it, we can update login.html too to extend our new base.html file:

<!-- templates/registration/login.html -->
{% extends "base.html" %}

{% block title %}Login{% endblock %}

{% block content %}
<h2>Log In</h2>
<form method="post">
 {% csrf_token %}
 {{ form.as_p }}
 <button type="submit">Log In</button>
</form>
{% endblock %}

Now, update the django_project/urls.py file so we can display the homepage. Usually, I prefer to

create a dedicated pages app for this purpose. Still, we can do it for simplicity within our

existing django_project/urls.py file: import TemplateView on the third line and then add a URL

pattern for it at the path "".

django_project/urls.py
from django.contrib import admin
from django.urls import path, include
from django.views.generic.base import TemplateView # new

urlpatterns = [
 path("admin/", admin.site.urls),
 path("accounts/", include("django.contrib.auth.urls")),
 path("", TemplateView.as_view(template_name="home.html"), name="home"), # new
]

And we're done. If you start the Django server again with python manage.py runserver and navigate

to the homepage at http://127.0.0.1:8000/ you'll see the following:

It worked! But how do we log out? The only option currently is to go into the admin panel

at http://127.0.0.1:8000/admin/ and click the "Logout" link in the upper right corner.

The "Logout" link will log us out, as seen by the redirect page:

If you go to the homepage again at http://127.0.0.1:8000/ and refresh the page, it is visible that we

are logged out.

Logout link

Let's add a logout link to our page so users can easily toggle back and forth between the two states.

Fortunately, the Django auth app already provides a built-in URL and view. And if you think about it,

we don't need to display anything on logout, so there's no need for a template. After a successful

"logout" request, we are all really redirected to another page.

So let's first add a link to the built-in logout URL in our home.html file:

<!-- templates/home.html-->

{% extends "base.html" %}

{% block title %}Home{% endblock %}

{% block content %}
{% if user.is_authenticated %}
 Hi {{ user.username }}!
 <p>Log Out</p>
{% else %}
 <p>You are not logged in</p>
 Log In
{% endif %}
{% endblock %}

Then update settings.py with our redirect link, LOGOUT_REDIRECT_URL. Add it right next to our login

redirect so the bottom of the settings.py file should look as follows:

django_project/settings.py
LOGIN_REDIRECT_URL = "/"
LOGOUT_REDIRECT_URL = "/" # new

Now that we have a homepage view, we should use that instead of our current hardcoded approach.

What's the URL name of our homepage? It's home, which we named in

our django_project/urls.py file:

django_project/urls.py
 ...
 path("", TemplateView.as_view(template_name="home.html"), name="home"),
 ...

So we can replace "/" with home at the bottom of the settings.py file:

django_project/settings.py
LOGIN_REDIRECT_URL = "home"
LOGOUT_REDIRECT_URL = "home"

If you revisit the homepage and log in, you'll be redirected to the new homepage with a "logout" link

for logged-in users.

Clicking it takes you to the homepage with a "login" link.

Conclusion

With very little code, we have a robust login and logout authentication system. It probably feels like

magic since the auth app did much of the heavy lifting for us. However, the benefit of Django's

"batteries-included" approach is that it provides a lot of functionality out-of-the-box while leaving

room for plenty of customization if desired.

	Django Login and Logout Tutorial
	Setup
	The Django auth app
	Login Page
	Create users
	Create a homepage
	Logout link
	Conclusion

