

 DEVOPS
 Mr. RAM

 KUBEADM:

 Kubeadm is a tool built to provide kubeadm init and kubeadm join as best-

practice "fast paths" for creating Kubernetes clusters.

 kubeadm performs the actions necessary to get a minimum viable cluster up

and running.

 By design, it cares only about bootstrapping, not about provisioning machines

(underlying worker and master nodes).

 Kubeadm also serves as a building block for higher-level and more tailored

tooling.

KUBEADM’S FEATURES:

 Common use cases for Kubeadm include testing, creating baselines for more

advanced K8s deployments, and providing new K8s users a simple starting

point for cluster configuration.

 The specific features that make kubeadm useful in those applications are:

QUICK MINIMUM VIABLE CLUSTER CREATION:

 Kubeadm is designed to have all the components you need in one place in one

cluster regardless of where you are running them.

PORTABLE:

 Kubeadm can be used to set up a cluster anywhere whether it's your laptop, a

Raspberry Pi, or public cloud infrastructure.

LOCAL DEVELOPMENT:

 As Kubeadm creates clusters with minimal dependencies and quickly, it's an

ideal candidate for creating disposable clusters on local machines for

development and testing needs.

BUILDING BLOCK FOR OTHER TOOLS:

 Kubeadm is not just a K8s installer. It also serves as a building block for other

tools like Kubespray.

 DEVOPS
 Mr. RAM

 KUBEADM INSTALLATION:

KUBEADM-PREREQUISITES:

 A compatible Linux host. (Debian and Red Hat)

 2 GB or more of RAM per machine

 2 CPUs or more.

 Full network connectivity between all machines in the cluster

 Unique hostname, MAC address, and product_uuid for every node.

 Certain ports are open on your machines.

 MUST disable swap

LAB-SETUP:

 Master Hostname: Master (10.10.10.100) 2GB Ram, 2vcpus

 Worker1 Hostname: Node1 (10.10.10.101) 1GB Ram, 1vcpus

 Worker2 Hostname: Node2 (10.10.10.102) 1GB Ram, 1vcpus

VM’S-NETWORK-SETUP:

STEP 1: Seting up Hostname on each vm based on LAB- SETUP

 #hostname Master

 #vim /etc/hostname

 Master

 #vim /etc/hosts

 Master-IP Master

 Node1-IP Node1

 Node2-IP Node2

 #bash

 #hostname Node1 [FROM Node1]

 #vim /etc/hostname

 Node1

 #vim /etc/hosts

 Node1-IP Node1

 Master-IP Master

 #hostname Node2 [FROM Node2]

 DEVOPS
 Mr. RAM

 #vim /etc/hostname

 Node2

 #vim /etc/hosts

 Node2-IP Node2

 Master-IP Master

 #bash

 STEP 2: Turnoff swap on all Master & Worker Nodes:

 #swapoff -a

 #vim /etc/fstb

 Comment a swap file system (#)

 #systemctl daemon-reload

 STEP 3: Disable SE-Linux firewalls on all master & Worker Nodes:

 #setenforce 0

 #vim /etc/selinux/config

 SELINUX=disabled

 #reboot

INSTALLING A CONTAINER RUN TIME ON ALL:

To run containers in Pods, Kubernetes uses a container runtime.

STEP 4: Set up the repository

#yum install -y yum-utils

#yum-config-manager --add-repo

https://download.docker.com/linux/rhel/docker-ce.repo

STEP 5: Install Docker Engine

#yum install docker-ce -y

NOTE: Getting any error, plese change repo lines

#vim /etc/yum.repos.d/docker-ce.repo

 DEVOPS
 Mr. RAM

[docker-ce-stable]

name=Docker CE Stable - $basearch

baseurl=https://download.docker.com/linux/centos/$releasever/$basearch/stabl

e

enabled=1

gpgcheck=1

gpgkey=https://download.docker.com/linux/centos/gpg

#yum install docker-ce -y

#docker --version

STEP 6: Start and Enable docker service

#systemctl start docker

#systemctl enable docker

#systemctl status docker

 INSTALLING KUBEADM, KUBELET AND KUBECTL:

 You will install these packages on all of your machines:

 kubeadm: The command to bootstrap the cluster.

 kubelet: The component that runs on all of the machines in your cluster and does

 things like starting pods and containers.

 kubectl: The command line util to talk to your cluster.

 DEVOPS
 Mr. RAM

 STEP 7: Setup a repository:

cat <<EOF | sudo tee /etc/yum.repos.d/kubernetes.repo

[kubernetes]

name=Kubernetes

baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-

\$basearch

enabled=1

gpgcheck=1

gpgkey=https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg

 exclude=kubelet kubeadm kubectl

 EOF

 STEP 8: Installing and Enable Kubelet:

 #yum install -y kubelet kubeadm kubectl --disableexcludes=Kubernetes

 #systemctl start kubelet

 #systemctl enable --now kubelet

 CG GROUP DRIVERS:

 Both the container runtime and the kubelet have a property called "cgroup

driver", which is important for the management of cgroups on Linux

machines.

 #mkdir /etc/docker

cat <<EOF | sudo tee /etc/docker/daemon.json

{

 "exec-opts": ["native.cgroupdriver=systemd"],

 "log-driver": "json-file",

 "log-opts": {

 "max-size": "100m"

 },

 "storage-driver": "overlay2"

}

EOF

 #systemctl enable docker

 #systemctl daemon-reload

 #systemctl restart docker

 DEVOPS
 Mr. RAM

 CREATING A CLUSTER WITH KUBEADM:

 The kubeadm tool is good if you need:

 A simple way for you to try out Kubernetes, possibly for the first time.

 A way for existing users to automate setting up a cluster and test their

application.

 A building block in other ecosystem and/or installer tools with a larger

scope.

 Before You Begin:

 One or more machines running a deb/rpm-compatible Linux OS; for

example: Ubuntu or CentOS.

 2 GiB or more of RAM per machine--any less leaves little room for your

apps.

 At least 2 CPUs on the machine that you use as a control-plane node.

 Full network connectivity among all machines in the cluster. You can use

either a public or a private network.

INITIALIZE KUBERNETES CLUSTER (FROM MASTER):

The control-plane node is the machine where the control plane

components run, including etcd (the cluster database) and the API Server

(which the kubectl command line tool communicates with).

To initialize the control-plane node run:

#kubeadm init --pod-network-cidr=10.10.0.0/16 --apiserver- advertise-

address=10.10.10.100

To start using your cluster, you need to run the following as a regular user:

$mkdir -p $HOME/.kube

$sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

$sudo chown $(id -u):$(id -g) $HOME/.kube/config

Alternatively, if you are the root user, you can run: #export

#KUBECONFIG=/etc/kubernetes/admin.conf

 DEVOPS
 Mr. RAM

 POD NETWORK ADD ON:

Installing pod network add on: [Flannel Network]

#kubectl apply -f

https://github.com/coreos/flannel/raw/master/Documentation/ku be-

flannel.yml [For Flannel network 10.10.0.0/16]

 (or)

#kubectl --kubeconfig=/etc/kubernetes/admin.conf create -f

https://docs.projectcalico.org/v3.14/manifests/calico.yaml [Calico

network]

 #kubectl apply -f https://docs.projectcalico.org/manifests/calico.yaml

 [For Network 192.168.0.0/16]

 #kubectl get pods --all-namespaces #kubectl get nodes

 JOINING NODES:

 The nodes are where your workloads (containers and Pods, etc) run.

 To add new nodes to your cluster do the following for each machine:

 You can join any number of worker nodes by running the following

 on each as root:

 #kubeadm join 10.10.10.10:6443 --token tpj9f5.ikl2z77ufimmwos3 \

--discovery-token-ca-cert-hash

sha256:dd6c10b0bb9efa3062017926806e77173baf5b80ee1ee7486867ddc

If you do not have the token, you can get it by running the following

command on the control-plane node:

 #kubeadm token list

https://github.com/coreos/flannel/raw/master/Documentation/ku
https://docs.projectcalico.org/v3.14/manifests/calico.yaml
https://docs.projectcalico.org/manifests/calico.yaml

 DEVOPS
 Mr. RAM

NOTE: By default, tokens expire after 24 hours. If you are joining a node to the

cluster after the current token has expired, you can create a new token by

running the following command on the control-plane node:

 #kubeadm token create

 After Joining nodes from the Master:

 #kubectl get nodes

 #kubectl get pods --all-namespaces

 #kubectl get nodes -o wide

 TROUBLE SHOOTING:

 Before removing the node, reset the state installed by kubeadm:

 #kubeadm reset [From worker node]

 Remove the Nodes [From Master]

 #kubectl drain <node name> --delete-local-data --force --ignore- daemonsets

 Now remove the node:

 #kubectl delete node <node name>

 To get a hash again to join nodes:

 #kubeadm token create --print-join-command

 CLEAN UP THE CONTROL PLANE:

 Use kubeadm reset on the control plane host to trigger a best-effort clean up

 #kubeadm reset

