DEVOPS
Mr. RN RAJU

docker

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

DOCKER

Docker 1s an open platform tool for developing, shipping, & running
applications. Docker enables you to separate your applications from your
infrastructure so you can deliver software quickly.

Docker 1s a bit like a virtual machine. But unlike a virtual machine, rather
than creating a whole virtual operating system.

Docker provides a way to run applications securely 1solated in a container,
packaged with all its dependencies and libraries.

It 1s designed to benefit both developers and system administrators, making
1t a part of many DevOps tool chains.

VIRTUALIZATION (VT)

VT is a software technology that makes computing environments
mdependent of physical infrastructure.

It 1s a process of creating virtual applications, virtual servers, storage & n/w.
It 1s the single most effective way to reduce I'T expenses while boosting
efficiency & agility for all size businesses.

VIRTUALIZATION BENEFITS:

Reduced capaital and operating costs.

Minimized or eliminated downtime.

Increased IT productivity, efficiency, agility and responsiveness.
Faster provisioning of applications and resources.

Greater business continuity and disaster recovery.

Simplified data center management.

Availability of a true Software-Defined Data Center.

VIRTUALIZATION TYPES:

Server Virtualization
Network Virtualization
Desktop Virtualization
Para-virtualization
Hardware-level virtualization

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

HYPERVISORS

e A hypervisor is a hardware virtualization technique that allows multiple
guest operating systems to run on a single host system at the same time.

® Guest OS shares hardware of the host computer, have its own processor,
memory and other h/w resources.

e A hypervisor is also known as a Virtual Machine Manager (VMM).

HYPERVISIOR TYPES:
TYPE1:

e Typel is on bare metal. VM resources are scheduled directly to the
hardware by the hypervisor.

Eg: VMware ESXI, Citrix XenServer, Microsoft Hyper-V, Lmux KVM.

APP APP
os os

HARDWARE

e Type2 is hosted. VM resources are scheduled against a host operating

TYPE2:

system, which 1s then executed against the hardware.

Eg: VMware workstation and Oracle virtual box.

e e

OPERATING SYSTEM

HARDWARE

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

VIRTUAL MACHINE (VM)

e A VM is a virtual environment that functions as a virtual computer system
with its own CPU, memory, network, and storage, created on a physical

e Most enterprises use a combination of physical and virtual infrastructure to
balance the corresponding advantages and disadvantages.

KEY PROPERTIES OF VIRTUAL MACHINE:
PARTITIONING:

e Run multiple operating systems on one physical machine.
e Divide system resources between virtual machines.

ISOLATION:

e Provide fault and security 1solation at the hardware level

e Preserve performance with advanced resource controls.
ENCAPSULATION:

e Save the entire state of a virtual machine to files.

e Move and copy virtual machines as easily as moving and copying files.
HARDWARE INDEPENDENCE:

e Provision or migrate any virtual machine to any physical server.

VIRTUALIZATION vs. CLOUD COMPUTING

e Virtualization 1s software that makes computing environments independent
of physical infrastructure.

e (Cloud computing is a service that delivers shared computing resources
(software and/or data) on demand via the Intemet.

e As complementary solutions, organizations can begin by virtualizing their
servers and then moving to cloud computing for even greater agility and
self-service.

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

DOCKER ARCHITECTURE

e Docker uses a client-server architecture. The Docker client talks to the
Docker daemon, which does the heavy lifting of building, running, and
distributing your Docker containers.

e The Docker client and daemon can run on the same system, or you can
connect a Docker client to a remote Docker daemon.

Docker_Client Docker_Host Flegistry #

bbbtk
L docker build) m ::_-d Docker daemon . @ ﬁg

| D"." ,'!/_
L dockerpull #(Containers Images\—l-

Py N
| dockerrun i ‘ ‘
- _— coniainer P . @

container

“' e’
container

container

-

DOCKER DAEMON:

e The Docker daemon (dockerd) listens for Docker API requests and manages
Docker objects such as images, containers, networks, and volumes.

DOCKER CLIENT:

e The Docker client (docker) 1s the primary way that many Docker users
mteract with Docker.

DOCKER REGISTRIES:

e A Docker registry stores Docker images. Docker Hub 1s a public registry
that anyone can use, and Docker 1s configured to look for images on Docker

Hub by default.

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

DOCKER OBJECTS

IMAGES:

® An image 1s a read-only template with mstructions for creating a Docker
container.

e A container 1s launched by running an image. An image 1s an executable
package that includes everything needed to run an application—the code, a
runtime, libraries, environment variables, and configuration files.

CONTAINERS:

e A container is a runnable instance of an image. You can create, start, stop,
move, or delete a container using the Docker API or CLI.

e Docker Containers are:
= Flexible : The most complex applications can be containerized.
= Lightweight : Containers leverage and share the host kernel.
= Interchangeable: You can deploy updates and upgrades on-the-fly.

= Portable : Build locally, deploy to the cloud, and run anywhere.
= Scalable : Increase and automatically distribute container replicas.
= Stackable : You can stack services vertically and on-the-fly.

THE UNDERLYING TECHNOLOGY

e Docker 1s written in the Go programming language and takes advantage of
several features of the Linux kernel to deliver its functionality.

e Docker uses a technology called namespaces to provide the isolated
workspace called the container.

e When you run a container, Docker creates a set of namespaces for that
container.

e These namespaces provide a layer of 1solation. Each aspect of a container
runs in a separate namespace and its access 1s limited to that namespace.

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

VIRTUAL MACHINES VS CONTAINERS

7

v .
Utilization Size Boot up Utilization Size Boot up

Virtual Machine Virfual Machine x >
Container Container

Application Application
Application Application

Libs | Deps Libs Deps
oS oS libs | Deps Libs Deps

Docker

VIRTUAL MACHINES:

e A virtual machine (VM) is a virtual environment that functions as a virtual
computer system with its own CPU, memory, network mterface, and

storage, created on a physical. In other words, creating a computer within a
computer.

e Multiple virtual machines can run simultaneously on the same physical
computer.

CONTAINERS:

e A container i1s a running instance of an 1mage. You can create, start, stop,

move, or delete a container using the Docker API or CLL

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

DOCKER INSTALLATION
DOCKER ENGINE OVERVIEW:

e Docker Engine is an open-source containerization technology for building
and containerizing your applications.
e Docker Engine acts as a client-server application with:
= A server with a long-running daemon process dockerd.
= APIs which specify interfaces that programs can use to talk to and
mnstruct the Docker daemon.
= A command line mterface (CLI) client docker.

SUPPORTED PLATFORMS:

e Docker Desktop for Mac (macOS)
e Docker Desktop for Windows
e Linux distributions:
Red Hat, Centos, Fedora, Debian, Ubuntu...etc.
e (Cloud Platforms:
AWS, AZURE, GCP, Digital Ocean.... etc.

INSTALL DOCKER ENGINE ON LINUX:
INSTALL ON CENTOS / RHEL 9:

e To mstall Docker Engine. you need a maintained version:
= CentOS7or 8
= RHEL 7or8
= Fedora 33 or 34

INSTALL ON UBUNTU:

e To mstall Docker Engine. you need the 64-bit version of one of these
Ubuntu versions:
= Ubuntu Hirsute 21.04
= Ubuntu Groovy 20.10
= Ubuntu Focal 20.04 (LTS)
= Ubuntu Bionic 18.04 (LTS)

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

STEP 1: Setting Up Hostname

#hostname Docker

#vim /etc/hostname

Docker
#bash

STEP2: Security-Enhanced Linux is being disabled or in permissive mode.
#sed -1 's/SELINUX=*/SELINUX=disabled/g' /etc/selinux/config

#setenforce 0

STEP 3: Update current OS

#yum update -y

STEP 4: Unistall Old Versions

yum remove docker \
docker-client \
docker-client-latest \
docker-common \
docker-latest \
docker-latest-logrotate \
docker-logrotate \
docker-engine \
podman \

unc

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

STEP 5: Set up the repository
#yum 1install -y yum-utils

#yum-config-manager --add-repo
https://download.docker.com/linux/rhel/docker-ce.repo

STEP 6: Install Docker Engine

#yum 1install docker-ce -y

NOTE: Getting any error, plese change repo lines
#vim /etc/yum.repos.d/docker-ce.repo
[docker-ce-stable]
name=Docker CE Stable - Sbasearch

baseurl=https://download.docker.com/linux/centos/$releasever/$basearch/sta
ble

enabled=1
gpgcheck=1
gpgkey=https://download.docker.com/linux/centos/gpg

#yum 1install docker-ce -y

#docker --version

STEP 7: Start and Enable docker service
#systemctl start docker
#systemctl enable docker

#systemctl status docker

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

INSTALL DOCKER DESKTOP ON WINDOWS

e Windows 10 64-bit- Home or Pro 2004 (build 19041) or higher, or
Enterprise or Education 1909 or higher.
e Enable the WSL 2 feature on Windows. (Windows Subsystem for Linux,
version 2)
e The following hardware prerequisites are required to successfully run WSL
2 on Windows 10:
= 64-bit processor with Second Level Address Translation (SLAT)
®» 4GB system RAM
= BIOS-level hardware virtualization support must be enabled in the BIOS
settings.
= Download and install the Linux kernel update package:
https://docs. microsoft.com/en-us/windows/wsl/install-win 1 0#step-4---
download-the-linux-kernel-update-package

NOTE: Please follow the bellow link for docker installation.
https://docs.docker.com/engine/install/

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

DOCKER IMAGES & CONTAINERS
DOCKER IMAGES:

#docker search centos

#docker pull centos

#docker images (or) #docker image Is
Image History:

#docker image history a9d583973165
Image Details:

#docker 1mage mspect ubuntu
Removing dangling images:

A dangling image 1s an image that 1s not tagged and 1is not used by any
container.

To remove dangling images:

#tdocker image prune

Remove Image:

#docker rmi imageid or docker images rm imageid
Removing all unused images

#docker image prune -a

MANIPULATING DOCKER IMAGES:

#docker run -1 -t <imagename>:<tag> /bin/bash

Options: -i - Gives us an interactive shell to the running container
-t : Will allocate a pseudo-tty

-d : The daemon mode

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

Create a first Container with name Test1

#docker run -d -1t --name Test] centos

To List Running Containers

#docker ps (or) #docker container Is

To list all containers

#docker ps -a

Docker Exec: Execute a command in a running container.
Execute a command on a container:

#docker exec -d Testl touch /opt/aws

#docker exec -d Testl 1s /opt/

Execute an interactive bash shell on the container:

#docker exec -it Testl bash

#exit

To Stop Container (Application shutdown gracefully)
#docker stop cid

#docker start -a cid : -a attach mode

Rename Container:

#tdocker rename <current container name> <new_ container name>
Container stats:

#docker stats <container name>

#docker stats cid

Monitor Container:

#docker top cid/name

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

Container Pause:

#docker container pause containerID

Container Unpause:

#docker container unpause cid

Kill one or more Containers:

#docker kill cid [no time for proper shutdown of Application]
Removing Containers:

#docker contamer rm cid (or) #docker rm cid

Removing all stopped containers:

#docker container prune

Docker Logs: Fetch the logs of a container
Check Docker Logs:
#docker logs cid

Logs to verify Consensually:

#docker logs -fcid

Docker System and stats:

Docker System will manage docker (Host system)
Show docker disk usage:

#docker system df

Display system-wide information

#docker system info :

Get real time events from the server:

#docker system events

DEVOPS
Mr. RN RAJU

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

.
Use docker events to get real-time events from the server:

Open two terminals, on first one run:

#docker system events

On second terminal launch or stop any container

#docker stop CID / #docker run -d -1t --name Test2 centos

Now to check the events on first terminal

Delete all stopped and unused containers:

#docker system prune

Delete all images and stopped containers:

#docker system prune -a

Docker stats: The docker stats command returns a live data stream for

running containers.

#docker stats CID

PORT FORWARDING:

#docker run -d -1t -p <host port>:<container port> <image>:<tag>
#docker pull nginx

#docker run -d -1t --name mynginx -p 8090:80 nginx

#docker ps

To check the running port of the container

Go To Web Browser

http://IP-Address:8090/

To check Container Logs

#docker logs cid

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

Runtime options with Memory & CPUs:

By default, a container has no resource constraints and can use as much of a
given resource as the host’s kernel scheduler allows.

Docker provides ways to control how much memory, or CPU a container can
use, setting runtime configuration flags of the docker run command.

Container memory limit 512m max

#docker run -d -it —name samplel -p 800:80 -m 512m nginx

#docker status samplel

cpulimit 50000(50%b) total cpu size 100thousend

#docker run -d -1t --name sample2 -p 900:80 --cpu-quota=50000 nginx
#docker status sample?2

To run a container from the centos image, assigning 1 GB of RAM for the
container to use and reserving 1 GB of RAM for swap memory, type:

#docker run -d -1t --name sample3 --memory="1g" --memory-swap="2g" centos

DYNAMICALLY UPDATES CONTAINER CONFIGURATION:
Docker Update: Update configuration of one or more containers
Update a container’s cpu-shares

#docker update --cpu-shares 512 cid

Update a container with cpu-shares and memory

#docker update --cpu-shares 512 -m 300M cid

If you started a container with this command:

#docker run -dit --name test4 --kernel-memory 50M centos bash

You can update kernel memory while the container is running:

#docker update --kernel-memory 80M test4

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

MANAGE DOCKER FILE

docker

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

DOCKER FILE

e Dockerfile 1s the core file that contains mstructions to be performed when an
1mage 1s built.

e [t is atext document that contains all the commands a user could call on the
CLI to assemble an image.

e The docker build command builds an 1image from a Dockerfile and a context.
SYNTAX: Instruction arguments
NOTE:

e In Dockerfile “#” 1s a single line comment.

e The escape character is used both to escape characters in a line, and to
escape a newline. This allows a Dockerfile instruction to span multiple lines.

¢ Note that regardless of whether the escape parser directive 1s included in a
Dockerfile, escaping 1s not performed mn a RUN command, except at the end
of a line.

BUILDING IMAGES USING DOCKERFILE:

e The docker build command builds Docker images from a Dockerfile and a
“context”.

e A build’s context is the set of files located in the specified PATH or URL.
e The URL parameter can refer to three kinds of resources: Git repositories,
pre-packaged tarball contexts and plain text files.

Build with PATH:
#docker build .

Build with URL:
#docker build github.com/creack/docker-firefox

Build with -:
#docker build - < Dockerfile

Build with Tag and File:
#docker build -f <path _to Dockerfile> -t <REPOSITORY>:<TAG>

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

DOCKER FILE INSTRUCTIONS & ARGUMENTS

FROM:

e A docker file must start with a FROM mstruction.
e The FROM mstruction initializes a new build stage and sets the Base Image
for subsequent instructions.

E.g.: FROM centos:latest

MAINTAINER:

e MAINTAINER is used to specify about the author who creates this new
docker 1mage for the support.

E.g.: MAINTAINER RAJU mraju4u@gmail.com

LABEL:

e LABEL s used to specify metadata information to an Image, which 1s a
Key-Value Pair.

E.g.: LABEL "App Env"="Production"

RUN:

e It is used to executes any commands on top of the current image and this
will create a new layer.

e [t has two forms:
SHELL FORM:
E.g.: RUN yum update -y
EXECUTABLE FORM:
E.g.: RUN ["yum","update"]

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

CMD:

e Jtis used to set a command to be executed when running a container.
e There must be one CMD in a Dockerfile. If more than one CMD is listed.
only the last CMD takes effect.

E.g.: CMD ping google.com

ENTRYPOINT:
e Itis used to configure and run a container as an executable.
E.g.: ENTRYPOINT ping google.com

NOTE: If user specifies any arguments (commands) at the end of "docker run"
command, the specified commands override the default in CMD instruction,
But ENTRYPOINT instructional are not overwritten by the docker run
command and ENTRYPOINT instruction will run as it is.

COPY:

e Itis used to copy files, directories and Remote url files to the destination
(Docker image) within the file system of the docker images.

E.g.: COPY src dest

NOTE: If the "src" argument 1s compressed file (tar, zip bzip2..etc), then it
will copy exactly as a compressed file and will not extract.

ADD:

e [tis used to copy files, directories and Remote URL files to the destination
within the file system of the docker images.

E.g.: ADD src dest

NOTE: If the "src" argument 1s compressed file (tar, zip bzip2...etc), then 1t
will Extract it automatically inside a destination in the Docker image.

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

WORKDIR:

e It is used to set the working directory.

E.g.: WORKDIR /tmp

EXPOSE:

e This mstruction informs Docker that the container listens on the specified
network ports at runtime.

e By default, EXPOSE assumes TCP. You can also specify UDP.

e To publish the port when running the container, use the -p flag on docker
run

E.g.: EXPOSE 80/icp

USER:

e The USER instruction lets you specify the username to be used when a
command 1s run.

e Jtis used to set the user’s name, group name, UID, GID for running
subsequent commands_ Else root user will be used.

E.g.: USER webadmin

ENV:
e It is used to set environmental variables with Key Value set.

E.g.: ENV usemame admin ~ (or) ENYV username=admin

ONBUILD:

e]t lets you stash a set of commands that will be used when the 1mage 1s used
again as a base 1image for a container.

E.g.: ONBUILD ADD

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

VOLUME:

e The VOLUME instruction is used to specify a mount point for a volume
within the container.

e The volume will be created when the container 1s built, and it can be
accessed and modified by processes running inside the container.
E.g.: VOLUME /my data

ARG:

e Itis also used to set environment variables with Key-Value, but this variable
will set only during the image build not on the container.

Eg.: ARG tmp ver2.0

Understand how ARG and FROM interact:

FROM instructions support variables that are declared by any ARG instructions
that occur before the first FROM.

ARG CODE_VERSION=latest
FROM base:$ {CODE_VERSION}
E.g.:
ARG VERSION=latest
FROM centos:$VERSION
ARG VERSION
RUN echo SVERSION > image version

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

b
PROJECT 1: SIMPLE DOCKERFILE IMAGE BUILD
FROM centos:7
MAINTAINER RAJU mrajud4u@gmail.com
RUN yum update -y
LABEL "Env"="Prod" \
“Project™="Aurtel” \

"Version"="8 4"

COPY *.txt /opt/

PROJECT 2: BUILDING PYTHON FLASK
FROM centos:latest

MAINTAINER Raju "mraju4u@gmail.com"
RUN yum update -y

RUN yum mnstall -y python3 python3-pip wget
RUN pip3 mstall Flask

ADD hello.py /home/hello.py

WORKDIR /home

BUILDING DOCKER IMAGE FROM A FILE:
#docker build -t python3:latest .
#docker ps
#docker run -d -p 5000:5000 python:centos python3 hello.py
#docker logs cid
Hello World

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

o
PROJECT 3: BUILDING APACHE HTTP SERVER

#Download an Image file

FROM centos:laest

#Installing Apache httpd on a image

RUN yum mstall httpd -y

#Copy index.html file into Document root location

COPY index html /var/www/html/

#Running Port with 80

EXPOSE 80

#To make service to start

CMD ["/usr/sbin/httpd","-D","FOREGROUND" |

Create an index.html file in the locattion
#vim index.html
WELCOME TO SYSGEEKS...!
BUILDING DOCKER IMAGE FROM A FILE:
#docker build -t webserver:httpd-2.4 .
#docker run -d -1t —name webserver -p 8000:80 webserver:httpd-2.4
#docker ps
Go To Web Browser, type:
http://10.10.10.10:8000

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

IMAGE FROM CONTAINER CHANGES

DOCKER COMMIT: Create a new image from a container’s changes

e [t canbe useful to commit a container’s file changes or settings into a new
1mage. This allows you to debug a container by running an interactive shell,
or to export a working dataset to another server.

e The commit operation will not include any data contained in volumes
mounted inside the container.

e By default, the container being committed and its processes will be paused
while the image i1s committed.

Download and Create a New Container:
#docker pull centos
#tdocker images
#docker run -d -1t —name Mycentos centos
#docker ps
Connect and Changes on a Container:
#docker exec -it Mycentos bash
Changing Centos Repo mirrors in a container
#cd /etc/yum repos.d/
#sed -1 's/mirrorlist/#mirrorlist/g' /etc/yum.repos.d/CentOS-*

#sed -1 'sf#baseurl=http://mirror.centos.orglbaseurl=http://vault.centos.org|g'
/etc/yum.repos.d/CentOS-*

#yum update -y

Hexit
Create an image from Container changes:
#docker commit CID My-Centos:raju

#docker image Is

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

dockerhub

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

DOCKER HUB

e Docker Hub i1s a service provided by Docker for finding and sharing
container images with your team.

e Link your images to the GitHub/Bitbucket repositories that can be built
automatically based on web hooks.

PUBLIC REPOSITORIES:

e Users get access to free public repositories for storing and sharing
1mages.

e Anyone can use docker pull command to download an image and run or
build further images from it.

PRIVATE REPOSITORIES:

e Private repositories are just that private.

e Users can choose a subscription plan for private repositories.

DOCKER HUB Vs DOCKER SUBSCRIPTION

DOCKER HUB:

e Shareable 1image, but it can be private.
e No hassle of self-hosting.
e Free (except for a certain number of private images).

DOCKER SUBSCRIPTION:

e Integrated into your authentication services (that is, AD/LDAP).
e Deployed on your own infrastructure (or cloud).

e (Commercial support.

NOTE: By default, repositories are pushed as public.

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

DOCKER HUB ENTERPRISE

e [t offers you is access to the software, access to updates/patches/security
fixes, and support relating to 1ssues with the software.

e The open-source Docker repository image doesn't offer these services at this
level;

MANAGING DOCKER HUB:

STEP 1: Sign up and Login docker hub through web interface:
https://hub.docker.com/

docker

Welcome

Log in to Docker to continue to Docker Hub.

Username or email address

rnraju

STEP 2: Select Create Repository:

#docker' Q Search Docker Hub Explore Reposiries Crganizations Help « m (ﬁ“ meju v

raraju v search by repositery name Q) All Contem v

mrEu / nodeapp 0 41 Public
Contains: lmage | Last pushed: 4 cays ogo wo - @ i
migu / devops . $ 3 o
Condains: Image | Last pashed: 4 cay=2go i:'_ . - @ aniic
mrgu / webservers s DuhE

Canalna: Image | Last pushed: 2 months sgo ﬁ 0 - @ uinC

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

Create a Repository:

Explore Repositories Organizations Help - @‘]\ mray ~

Using 0 af 1 private rapositories: Gel mare

Create repository Pro tip
You can push a new image to this repostery using the CLI

Namanpaes
mrai -
ey docker tag local-image:tagname new-repo:tagname
docker push new-repo:tagname
Descnptan
My Derops Images Make sure to change tag with your desired image repositaory tag.
Visibility

Publlic) 0 Private
Appears in Docker Hub search results Only visible to you

®

STEP 3: Verify Created Repository
Explore Repositories Organizations Help ~ (ﬁm mrajy -

devops General Using 0 of 7 private repositories, Get mare

mraju

General Tags Builds Collaborators Webhooks Semtings

@ Add & short description for fis repositary Update

The shart deseription isused to mdex your content on Docler Hub aad in seach engires. Vs visible to users in search resufis

. Smmmnte
© rnraju/devops Docker commands T |

i Topush anew tag to this repositary,
Description P g positary,

This reposilory does nothave a description # docker push rorajufdevops:tagname

() Last pushed: 4 daysago

Tags Automated Builds
This repository contains 3 tagis). Manually pushing images to Hub? Connect your account to GitHub or
Bitbucket to automatically build end tag new images whenever your
Tag 0s Type Pulled Pushed code is updated, so you can focus your tme on treating.

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

DOCKER HUB FROM THE CLI:

#docker login
Login : rnraju
Pass ! XXXXX

BUILDING & PUSHING AN IMAGES TO DOCKER HUB:
PROJECT 1: BUILDING WEB SERVER IMAGE
STEP1: Create a Dockerfile

#vim Dockerfile

#Installing Apache Webserver

#From Ubuntu Image

FROM ubuntu:latest

#Update image

RUN apt-get update -y

#Installing Apache2 server

RUN apt-get install apache2 -y

#Copy index.html file into Document root location
COPY index. html /var/www/html/

#Running Port with 80

EXPOSE 80

#1 o make service to start

CMD ["apache2ct]l", "-D", "FOREGROUND"]

STEP2: Building an Image:

#docker build -t rmraju/webserver:2.4 .

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

#docker images
STEP3: Make a container for Testing
#docker run -it -d -p 6000:80 --name Apache-webserver rnraju/webserver:2.4

#docker ps

STEP3: Go to Browser
http://IP-Address:6000

STEP4: Push the image to Docker hub
#docker login

#docker push rnraju/webserver:2.4

STEPS: Go and Verify in docker Hub

PROJECT 2: BUILDING DOCKER IMAGE FOR NODEJS:
STEP 1: Create a Dockerfile
#vim Dockerfile

#Specify a base image

FROM node:alpine

#Copy Local files to container
WORKDIR /usr/app

COPY ./ /usr/app

#Install Some Dependencies
RUN npm install

#Default Command

CMD ["npm", "start"]

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

STEP 2: Create a “package.json” file
#vim package.json
{

"dependencies": {

Hexpressﬂ nkn

¥
"seripts": {

n.n

"start": "node index.js"

}
b

STEP 3: Create a “index.js” file

#vim index js
const express = require('express’);
const app = express();
app.get('/', (req, res) => {
res.send("WELCOME TO NODEIJS...";
2
app.listen(8080, () => {
console.log('Listening on port 8080');

b
STEP 4: Build an image:

#docker build -t rnraju/nodejs .

#docker images

MAIL: Rorajudu@email.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

STEP 5: Running a container from the image file
#docker run -d -1t —name mynodejs -p 4000:8080 rnraju/nodejs

#docker images

STEP 6: Enter the container with shell prompt
#docker run -1t rnraju/nodejs

ffcd /usr/app
#ls

STEP 7: Go and connect to the browser:
http://IP-Address:4000

STEP 8: Push the image to Docker hub
#docker login
#docker push rnraju/nodejs

STEP 9: Go and Verify in Docker Hub Repository

DEVOPS
Mr. RN RAJU

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

MANAGE DOCKER NETWORK

MAIL: Roraju4u@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

DOCKER NETWORKING

Docker includes support for networking containers through the use of
network drivers.

It 1s used to establish communication between Containers and outside world
via the Docker host machine.

Docker supports different types of network drivers, each fit for certain use
cases.

NETWORK DRIVERS:

Docker’s networking subsystem is pluggable, using drivers. Several drivers
exist by default, and provide core networking functionality:

* Bridge

= Host

= Overlay

= Jpvlan

= Macvlan

= None

= Network plugins

BRIDGE NETWORK:

A Default Bridge Network (Bridge) is created automatically, when you
start docker.

A bridge network 1s a Link Layer device which forwards traffic between
network segments. A bridge can be a hardware device or a software device
running within a host machine’s kernel.

eth0: 172.17.0.2

elhn: 192.168.0.2

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

NOTE: The relationship between a host and containers 1s 1:N
To Check default bridge driver:
#ifconfig

#docker network Is

#docker network inspect bridge

Create a New Container:

#docker run -d -it --name Samplel centos
#docker exec -1t Samplel 1p a

#docker network mspect bridge

Create Another New Container

#docker run -d -1t --name Sample2 centos
#docker exec -1t Sample2 ip a

Testing Network connection:

#docker exec -1t Sample2 bash

#ping 172.17.0.2

DEVOPS
Mr. RN RAJU

NOTE: It will communicate each one because both are running on same bridge

To remove container after exit use —rm flag:
#docker run --rm -1t --name Sample3 centos bash

To Change Container Hostname:

#docker run -1t --name Sample4 --hostname Sample4 example.com centos bash

#hostname
#vim /etc/hosts
172.x.0.x Sample4.example.com

#Hexit

MAIL: Roraju4u@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

USER-DEFINED BRIDGE NETWORK

These networks are superior to the default bridge network.

It 1s usually used when your applications run in standalone containers that
need to communicate.

These are best when you need multiple containers to communicate on the
same Docker host.

eth0: 172.17.0.2 eth0: 10.0.0.254

|

m e

eth0: 192.168.1.2

DIFFERENCE BETWEEN USER-DEFINED BRIDGES AND THE
DEFAULT BRIDGE:

User-defined bridges provide automatic DNS resolution between containers.
User-defined bridges provide better 1solation.

Containers can be attached and detached from user-defined networks on the
fly.

Each user-defined network creates a configurable bridge.

Linked contamers on the default bridge network share environment
variables.

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

T
Manage a user-defined bridge:

#docker network Is

#docker network create my-bridge

#docker network Is

Create a container on my-bridge:

#docker run -d -it --name Testl --network my-bridge centos

#docker ps

#docker exec -1t Testl 1p a

Connect a container to a user-defined bridge:

#docker run -1t -d --name web-nginx —network my-bridge -p 8080:80 nginx
Disconnect a container from a user-defined bridge:

#docker network disconnect my-net my-nginx

COMMUNICATING DEFAULT & CUSTOM NETWORK
CONTAINERS:

| eth0: 172.17.0.2 eth1:10.0.0.2 eth0: 10.0.0.254

m

eth0: 192.168.1.2

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU
Create a new container on default bridge:
#docker run -d -it —-name web centos
#docker ps

#docker exec -1t web 1p a

Creating custom subnet:

#docker network create my-bridge --subnet 10.0.0.0/16 --gateway 10.0.0.1
#docker network inspect my-bridge

Create a Container on My-Bridge:

#docker run -d -1t --name db --net my-bridge centos

#docker exec -1t db 1p a

#docker exec -1t db bash

#ping 172.17.0.2

Connect a Default network from My-Bridge network:
docker network connect bridge db

NOTE: Now Network Test 1s working

Disconnect a container:

#docker network disconnect bridge db

Removing User-Defined Bridge network:

Before Removing, if containers are currently connected to the network,
disconnect them first.

#docker network 1s

#docker network rm my-bridge

MAIL: Roraju4u@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

HOST NETWORK:

e If you use the host network mode for a container, that container’s network
stack is not isolated from the Docker host (the container shares the host’s
networking namespace), and the container does not get its own [P-address
allocated.

e These are best when the network stack should not be i1solated from the
Docker host, but you want other aspects of the container to be i1solated.

NOTE: The host networking driver only works on Linux hosts.

Create a new container:

#docker run -d -1it--name Webl host --network host nginx
#docker ps

#docker exec -1t webl 1p addr show

Create another container from Centos image:
#docker run -1t --name Web2 —network host centos bash
#ifconfig

NOTE: Host and Container networks are same

OVERLAY NETWORK:

e [t connects multiple Docker daemons together and enable swarm services to
communicate with each other.

e [t provides to facilitate communication between a swarm service and a
standalone container.

e These are best when you need containers running on different Docker hosts
to communicate, or when multiple applications work together using swarm
services.

MAIL: Roraju4u@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

IPVLAN NETWORK:

e [Pvlan networks give users total control over both IPv4 and IPv6 addressing.

MACVLAN NETWORK:

e It allows you to assign a MAC address to a container, making it appear as a
physical device on your n/w.

e macvlan driver 1s sometimes the best choice when dealing with legacy
applications.

e These are best when you are migrating from a VM setup or need your

containers to look like physical hosts on your network, each with a unique
MAC address.

NONE NETWORK:

e None network disables the complete networking stack on a container.
e Usually used in conjunction with a custom network driver.

NOTE: Not available for swarm services.

Create a New Container (Disabling network for a container):
docker run --rm -dit --network none --name myalpine alpine sh

Check the container’s network stack, by executing some common networking
commands within the container.

docker exec myalpine 1p link show
NOTE: No ethernet was created
Only one instance of "host" and "null" networks are allowed.

#Hexit

MAIL: Roraju4u@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

MANAGE DOCKER STORAGE

&

docker

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

MANAGING DATA IN DOCKER

e By default, all files created inside a container on a writable container layer.
e That means:
® The data doesn’t persist when that container no longer exists.
* You can’t easily move the data somewhere else.
e Docker has two options for containers to store files in the host machine
persistently.
= volumes
®* bind mounts
e Running Docker on Linux use a tmpfs mount and on Windows use a
named pipe.

MOUNTING TYPES:
~
[#] Container o pfS
bind mount
mount volume
Filesystem Memory
;- I;o:k:r a-r;a L
e o o o o -]
\ J

e volumes are often a better choice than persisting data in a container’s
writable layer, because a volume doesn’t increase the size of the containers
using it, and the volume’s contents exist outside the lifecycle of a given
container.

e [f your container generates non-persistent state data, consider using a tmpfs
mount to avoid storing the data anywhere permanently, and to increase the
container’s performance by avoiding writing into the container’s writable
layer.

MAIL: Roraju4u@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

TMPFS MOUNT

e When you create a container with a tmpfs mount, the container can create
files outside the container's writable layer. As opposed to volumes and bind
mounts, a tmpfs mount is temporary, and only persisted in the host memory.

LIMITATIONS OF TMPFS MOUNTS:

e Unlike volumes and bind mounts, you can’t share tmpfs mounts between
containers.
e This functionality is only available if you’re running Docker on Linux.

Create a New Container with tmpfs mount:
#docker run -d -it --name appl --tmpfs /data centos

#docker ps

Connect a Container:
#docker exec -it appl bash
#cd /data

#touch abc

Hexit
Now Stop & Start a Container:
#docker stop appl

#docker start app1

Verify the data in a /data mount point:

#docker exec -1t appl Is /data [No files 1n a mount point /data]

MAIL: Roraju4u@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

VOLUMES

Volumes are the best way to persist data in Docker.

These are stored in a host filesystem which 1s managed by Docker
(/var/lib/docker/volumes/ on Linux).

Volumes support volume drivers, which allows you to store your data on
remote hosts / cloud providers.

VOLUMES HAVE SEVERAL ADVANTAGES OVER BIND MOUNTS:

Volumes are easier to back up or migrate than bind mounts.

You can manage volumes using Docker CLI commands or the Docker API.
Volumes work on both Linux and Windows containers.

Volumes can be more safely shared among multiple containers.

Volume drivers let you store volumes on remote hosts or cloud providers, to
encrypt the contents of volumes, or to add other functionality.

New volumes can have their content pre-populated by a container.

Volumes on Docker Desktop have much higher performance than bind
mounts from Mac and Windows hosts.

MANAGING VOLUMES:

Create a new container:

#docker run -d -it —name -v /my-data Testl centos

#docker exec -1t Testl bash
#cd /my-data
#touch filel file2

By default docker volumes are: /var/lib/docker/volumes/

#cd /var/lib/docker/volumes/
#ls CID/ dada/

MAIL: Roraju4u@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

CREATE AND MANAGE VOLUMES:

Creates a new volume that containers can consume and store data in. If a name
1s not specified, Docker generates a random name.

Syntax: #docker volume create [options] [VOLUME]
#docker volume create my-vol

#docker volume s

#cd /var/lib/docker/volumes

#ls

To inspect a Volume:

#docker volume nspect my-vol

Start a Container with a Volume:

#docker run -1t --name Test2 -v my-vol:/my-data centos bash
#cd /my-data

#touch aws azure gcp

#ls

(or)

#docker run -1t --name Test2 --mount source=my-vol,target=/my-data centos sh
##cd /my-data
#touch aws azure gcp

#ls

MAIL: Roraju4u@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU
Creating volume from an existing directory with data:
#docker run -1t -v volume:/var centos bash
#cd /var
#ls
#cd /var/lib/docker/volumes/volume/ data/

#ls

DATA VOLUME CONTAINERS:

Data volume containers come in handy(easy) when you have data that you want
to share between containers.

Create a container with one volume:

#docker run -1t -v /data --name datavolume centos bash
#cd /data

#touch abc

Hexit

Now, we need to connect some containers to this /data directory in the
container.

#docker run -1t --volumes-from datavolume ubuntu bash
#cd /data
#ls

DOCKER VOLUME BACKUPS:

e while your containers are immutable, the data inside your volumes is
mutable.

e It changes, while the items inside your Docker containers do not. For this
reason, you need to make sure that you are backing up your volumes.

e Volumes are stored on the system at /var/lib/docker/volumes/

MAIL: Roraju4u@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

BIND MOUNT

¢ Bind mounts may be stored anywhere on the host system.

e When you use a bind mount, a file or directory on the host machine 1s
mounted into a container.

e The file or directory 1s referenced by its absolute path on the host machine.

NOTE: Bind mounts have limited functionality compared to volumes.

Start a Container with Bind mount:
#docker run -1t -v /cloud:/aws centos bash

Here /cloud (on the Docker host) to the /aws directory inside the now running
Docker container.

#cd /aws

#touch aws azure gcp

On the Host Machine verify the path:
#cd /cloud

#ls

USE A READ-ONLY VOLUME:

It mounts the directory as a read-only volume, by adding ro.
mount it in the read-only mode:

#docker run -1t -v /data:/app:ro centos bash

#ed /app

#touch abc |

NOTE: Read-only file system error

MAIL: Roraju4u@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

Mount into a non-empty directory on the container:

e If you bind-mount a directory into a non-empty directory on the container,
the directory’s existing contents are obscured by the bind mount. This can be
beneficial, such as when you want to test a new version of your application
without building a new image.

#docker run -d -it --name broken-container -v /tmp:/usr nginx
The container is created but does not start. Remove it:

#docker container rm broken-container

REMOVING ONE OR MORE VOLUMES:

You cannot remove a volume that 1s in use by a container.
#fdocker volume Is

#docker volume rm my-vol

To Remove volume forcefully:

#docker volume rm -f my-vol

Remove all unused local volumes

#docker volume prune

#docker volume Is

NAMED PIPES:

e A npipe mount can be used for communication between the Docker host
and a container.

e Common use case 1s to run a third-party tool inside of a container and
connect to the Docker Engine APL

MAIL: Roraju4u@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

VOLUMES VS BIND MOUNT

Compared to Bind Mounts, Volumes are more flexible and have more
features, making them the most recommended option.

In your container, Bind Mount provides you access to local file/directory

storage on your local machine.

Volumes

Bind Mount

Easy backups and recoveries

There is a bit of complexity involved in backup
and recovery. You don't have to worry about it if

you know what folders to backup

To mount it, you only need the volume name.

Paths are not required.

It is necessary to provide a path to the host

machine when mounting with bind mounts.

Containers can have volumes created while they

are being created.

The mount folder will be created when the host

machine doesn't contain the folder.

There are APIs and CLIs for interacting with

Docker volumes.

Using CLI commands, you cannot access bind
mounts. The host machine still allows you to

work with them instantly.

The volumes are stored in /var/1ib/docker/

volumes.

A bind mount can reside anywhere on a host

computer.

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

docker

Compose

MAIL: Rorajudu@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

DOCKER COMPOSE

Docker Compose is a tool for defining and running multiple containers as a
single service.

with a single command, you create and start all the services from your
configuration.

Compose works 1n all environments: production, staging, development,
testing, as well as CI worktlows. Commands for application:

= Start, stop, and rebuild services

= View the status of running services

= Stream the log output of running services

* Run a one-off command on a service

The key features of Compose that make it effective are:

= Have multiple 1solated environments on a single host

= Preserves volume data when containers are created

= Only recreate containers that have changed

= Supports variables and moving a composition between environments

SERVICE:

A service can be run by one or multiple containers.

Examples of services might include an HTTP server, a database, or any
other type of executable program that you wish to run 1n a distributed
environment.

DOCKER COMPOSE FILE STRUCTURE:

services:
foo:
image: foo
bar:
image: bar
profiles:
- test
baz:
image: baz
depends_on:
- bar
profiles:
- Etest
zot:
image: zot
depends_on:
- bar
profiles:
- debun

MAIL: Roraju4u@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

USING COMPOSE IS BASICALLY A THREE-STEP PROCESS:

STEP1: Detine your app’s environment with a Dockerfile so it can be
reproduced anywhere.

STEP2: Detine the services that make up your app in docker-compose.yml so
they can be run together in an 1solated environment.

STEP3: Run docker compose up and the Docker compose command starts
and runs your entire app.

INSTALL DOCKER COMPOSE:
STEP 1: To download and install Compose standalone, run:

#curl -L "https://github.com/docker/compose/releases/download/1.28.6/docker-
compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compos

STEP 2: Apply executable permissions to the standalone binary in the
target path for the installation.

#chmod +x /usr/local/bin/docker-compos

STEP 3: Create a Soft link for binary:

#In -s /usr/local/bin/docker-compos /usr/bin/docker-compos

STEP 4: Test and execute compose commands using docker-compose.

#docker-compos version

MAIL: Roraju4u@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

DEVOPS
Mr. RN RAJU

SAMPLE APPLICATION WITH COMPOSE:
Create docker compose file at any location on your system.
#mkdir /dockercompos
#vim docker-compose.yml
version: '3' ###https://docs.docker.com/compose/compose-file/ [versions]
services:
web:
1mage: nginx
ports:
- 9090:80
database:

image: redis

Check the validity of file:
#docker-compos config

Run the compose file:
#docker-compos up -d
#docker-compos ps or #docker ps
Bring down application

#docker-compos down

SCALE A SERVICES:
#docker-compos up -d --scale database=4
#docker-compos ps

#docker-compos down

MAIL: Roraju4u@gmail.com NUMBER: +91 9848363431 YOUTUBE: SYSGEEKS

