

 DEVOPS
 Mr. RAM

 KUBERNETES OBJECTS:

 Kubernetes objects are persistent entities in the Kubernetes system.

Kubernetes uses these entities to represent the state of your cluster.

 Specifically, they can describe:

 What containerized applications are running (and on which nodes)

 The resources available to those applications

 The policies around how those applications behave, such as restart

policies, upgrades, and fault-tolerance.

OBJECT SPEC AND STATUS:

 Every Kubernetes object includes two nested object fields that govern the

object's configuration: object spec & object status.

 For objects that have a spec, you have to set this when you create the object,

providing a description of the characteristics you want the resource to have:

its desired state.

 The status describes the current state of the object, supplied and updated by

the Kubernetes system and its components.

DESCRIBING A KUBERNETES OBJECT:

 When you use the Kubernetes API to create the object (either directly or via

kubectl), that API request must include that information as JSON in the

request body.

 Most often, you provide the information to kubectl in a .yaml file. kubectl

converts the information to JSON when making the API request.

 OBJECT NAMES AND IDS:

 Each object in your cluster has a Name that is unique for that type of

resource.

 Every Kubernetes object also has a UID that is unique across your whole

cluster.

NAMES:

 A client-provided string that refers to an object in a resource URL, such as

/api/v1/pods/somename.

 Four types of commonly used name constraints for resources.

 DEVOPS
 Mr. RAM

DNS SUBDOMAIN NAMES:

 Most resource types require a name that can be used as a DNS

subdomain name as defined in RFC 1123.

 This means the name must:

 contain no more than 253 characters

 contain only lowercase alphanumeric characters, '-' or '.'

 start with an alphanumeric character

 end with an alphanumeric character

RFC 1123 LABEL NAMES:

 Some resource types require their names to follow the DNS label

standard as defined in RFC 1123.

 This means the name must:

 contain at most 63 characters

 contain only lowercase alphanumeric characters or '-'

 start with an alphanumeric character

 end with an alphanumeric character

RFC 1035 LABEL NAMES:

 Some resource types require their names to follow the DNS label

standard as defined in RFC 1035.

 This means the name must:

 contain at most 63 characters

 contain only lowercase alphanumeric characters or '-'

 start with an alphabetic character

 end with an alphanumeric character

PATH SEGMENT NAMES:

 Some resource types require their names to be able to be safely encoded

as a path segment.

 In other words, the name may not be "." or ".." and the name may not

contain "/" or "%".

 DEVOPS
 Mr. RAM

REQUIRED FIELDS:

 In the .yaml file for the Kubernetes object you want to create, you'll need to

set values for the following fields:

apiVersion: Which version of the Kubernetes API you're using to create this

object

kind: What kind of object you want to create

metadata: Data that helps uniquely identify the object, including a name

string, UID, and optional namespace

spec: What state you desire for the object

EXAMPLE: MANIFEST FOR A POD NAMED NGINX-DEMO:

 To preview changes to an object’s configuration before applying:

$kubectl diff -f nginx-demo.yml

 To create or update an object:

$kubectl apply -f nginx-demo.yml

$kubectl get pods

 To connect a container in pod:

$kubectl exec -it nginx-demo – bash

 DEVOPS
 Mr. RAM

VIEWING AN OBJECT:

 The final step in managing Kubernetes declarative objects is to view the

object configuration to ensure that the changes have been applied correctly.

 You can use the kubectl get command to view the current state of an object,

and use the -o yaml option to view the object configuration in YAML format:

$kubectl get -f <filename|url> -o yaml

$kubectl get -f nginx-demo -o yaml

 To delete a pod:

$kubectl delete pod nginx-demo

$kubectl get pods

EXAMPLE: TWO CONTAINERS IN A POD:

apiVersion: v1

kind: Pod

metadata:

 name: my-site

 labels:

 app: web

spec:

 containers:

 - name: front-end

 image: nginx

 ports:

 - containerPort: 80

 - name: rss-reader

 image: nickchase/rss-php-nginx:v1

 ports:

 - containerPort: 88

