kubernetes

OBJECTS DECLARATIVE

DEVOPS
Mr. RAM

KUBERNETES OBJECTS:

Kubernetes objects are persistent entities in the Kubernetes system.

Kubernetes uses these entities to represent the state of your cluster.

Specifically, they can describe:

= \What containerized applications are running (and on which nodes)

= The resources available to those applications

= The policies around how those applications behave, such as restart
policies, upgrades, and fault-tolerance.

OBJECT SPEC AND STATUS:

Every Kubernetes object includes two nested object fields that govern the
object's configuration: object spec & object status.

For objects that have a spec, you have to set this when you create the object,
providing a description of the characteristics you want the resource to have:
its desired state.

The status describes the current state of the object, supplied and updated by
the Kubernetes system and its components.

DESCRIBING A KUBERNETES OBJECT:

When you use the Kubernetes API to create the object (either directly or via
kubectl), that API request must include that information as JSON in the
request body.

Most often, you provide the information to kubectl in a .yaml file. kubectl
converts the information to JSON when making the API request.

OBJECT NAMES AND IDS:

Each object in your cluster has a Name that is unique for that type of
resource.

Every Kubernetes object also has a UID that is unique across your whole
cluster.

NAMES:

A client-provided string that refers to an object in a resource URL, such as
/api/v1l/pods/somename.
Four types of commonly used name constraints for resources.

DEVOPS
Mr. RAM

DNS SUBDOMAIN NAMES:

e Most resource types require a name that can be used as a DNS
subdomain name as defined in RFC 1123.
e This means the name must:

contain no more than 253 characters
contain only lowercase alphanumeric characters, '-' or .’
start with an alphanumeric character
end with an alphanumeric character

RFC 1123 LABEL NAMES:

e Some resource types require their names to follow the DNS label
standard as defined in RFC 1123.
e This means the name must:

contain at most 63 characters

contain only lowercase alphanumeric characters or '-'
start with an alphanumeric character

end with an alphanumeric character

RFC 1035 LABEL NAMES:

e Some resource types require their names to follow the DNS label
standard as defined in RFC 1035.
e This means the name must:

contain at most 63 characters

contain only lowercase alphanumeric characters or '-'
start with an alphabetic character

end with an alphanumeric character

PATH SEGMENT NAMES:

e Some resource types require their names to be able to be safely encoded
as a path segment.

e In other words, the name may not be "." or ".." and the name may not
contain "/" or "%".

DEVOPS
Mr. RAM

REQUIRED FIELDS:

¢ Inthe .yaml file for the Kubernetes object you want to create, you'll need to
set values for the following fields:

apiVersion: Which version of the Kubernetes APl you're using to create this
object

kind: What kind of object you want to create

metadata: Data that helps uniquely identify the object, including a name
string, UID, and optional namespace

spec: What state you desire for the object

EXAMPLE: MANIFEST FOR A POD NAMED NGINX-DEMO:
apiVersion: v1
kind: Pod
metadata:
name: nginx-demo
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80

— To preview changes to an object’s configuration before applying:

$kubectl diff -f nginx-demo.yml

— To create or update an object:
$kubectl apply -f nginx-demo.yml
$kubectl get pods

— To connect a container in pod:
$kubectl exec -it nginx-demo — bash

DEVOPS
Mr. RAM

VIEWING AN OBJECT:

e The final step in managing Kubernetes declarative objects is to view the
object configuration to ensure that the changes have been applied correctly.

e You can use the kubectl get command to view the current state of an object,
and use the -0 yaml option to view the object configuration in YAML format:

$kubectl get -f <filename|url> -0 yaml

$kubectl get -f nginx-demo -0 yaml
— To delete a pod:

$kubectl delete pod nginx-demo

$kubectl get pods

EXAMPLE: TWO CONTAINERS IN A POD:
apiVersion: v1
kind: Pod
metadata:
name: my-site
labels:
app: web
spec:
containers:
- name: front-end
image: nginx
ports:
- containerPort: 80
- name: rss-reader
image: nickchase/rss-php-nginx:v1l
ports:

- containerPort: 88

