

 DEVOPS
 Mr. RAM

 KUBERNETES OBJECTS:

 Kubernetes objects are persistent entities in the Kubernetes system.

Kubernetes uses these entities to represent the state of your cluster.

 Specifically, they can describe:

 What containerized applications are running (and on which nodes)

 The resources available to those applications

 The policies around how those applications behave, such as restart

policies, upgrades, and fault-tolerance.

OBJECT SPEC AND STATUS:

 Every Kubernetes object includes two nested object fields that govern the

object's configuration: object spec & object status.

 For objects that have a spec, you have to set this when you create the object,

providing a description of the characteristics you want the resource to have:

its desired state.

 The status describes the current state of the object, supplied and updated by

the Kubernetes system and its components.

DESCRIBING A KUBERNETES OBJECT:

 When you use the Kubernetes API to create the object (either directly or via

kubectl), that API request must include that information as JSON in the

request body.

 Most often, you provide the information to kubectl in a .yaml file. kubectl

converts the information to JSON when making the API request.

 OBJECT NAMES AND IDS:

 Each object in your cluster has a Name that is unique for that type of

resource.

 Every Kubernetes object also has a UID that is unique across your whole

cluster.

NAMES:

 A client-provided string that refers to an object in a resource URL, such as

/api/v1/pods/somename.

 Four types of commonly used name constraints for resources.

 DEVOPS
 Mr. RAM

DNS SUBDOMAIN NAMES:

 Most resource types require a name that can be used as a DNS

subdomain name as defined in RFC 1123.

 This means the name must:

 contain no more than 253 characters

 contain only lowercase alphanumeric characters, '-' or '.'

 start with an alphanumeric character

 end with an alphanumeric character

RFC 1123 LABEL NAMES:

 Some resource types require their names to follow the DNS label

standard as defined in RFC 1123.

 This means the name must:

 contain at most 63 characters

 contain only lowercase alphanumeric characters or '-'

 start with an alphanumeric character

 end with an alphanumeric character

RFC 1035 LABEL NAMES:

 Some resource types require their names to follow the DNS label

standard as defined in RFC 1035.

 This means the name must:

 contain at most 63 characters

 contain only lowercase alphanumeric characters or '-'

 start with an alphabetic character

 end with an alphanumeric character

PATH SEGMENT NAMES:

 Some resource types require their names to be able to be safely encoded

as a path segment.

 In other words, the name may not be "." or ".." and the name may not

contain "/" or "%".

 DEVOPS
 Mr. RAM

REQUIRED FIELDS:

 In the .yaml file for the Kubernetes object you want to create, you'll need to

set values for the following fields:

apiVersion: Which version of the Kubernetes API you're using to create this

object

kind: What kind of object you want to create

metadata: Data that helps uniquely identify the object, including a name

string, UID, and optional namespace

spec: What state you desire for the object

EXAMPLE: MANIFEST FOR A POD NAMED NGINX-DEMO:

 To preview changes to an object’s configuration before applying:

$kubectl diff -f nginx-demo.yml

 To create or update an object:

$kubectl apply -f nginx-demo.yml

$kubectl get pods

 To connect a container in pod:

$kubectl exec -it nginx-demo – bash

 DEVOPS
 Mr. RAM

VIEWING AN OBJECT:

 The final step in managing Kubernetes declarative objects is to view the

object configuration to ensure that the changes have been applied correctly.

 You can use the kubectl get command to view the current state of an object,

and use the -o yaml option to view the object configuration in YAML format:

$kubectl get -f <filename|url> -o yaml

$kubectl get -f nginx-demo -o yaml

 To delete a pod:

$kubectl delete pod nginx-demo

$kubectl get pods

EXAMPLE: TWO CONTAINERS IN A POD:

apiVersion: v1

kind: Pod

metadata:

 name: my-site

 labels:

 app: web

spec:

 containers:

 - name: front-end

 image: nginx

 ports:

 - containerPort: 80

 - name: rss-reader

 image: nickchase/rss-php-nginx:v1

 ports:

 - containerPort: 88

