.gf Terraform

PROVISIONERS

TERRAFORM
Mr. RAM

PROVISIONERS:

Resources are the most important element in the Terraform language.

You can use provisioners to model specific actions on the local machine or
on a remote machine in order to prepare servers or other infrastructure
objects for service.

PASSING DATA INTO VIRTUAL MACHINES AND OTHER COMPUTE
RESOURCES:

When deploying virtual machines or other similar compute resources, we

often need to pass in data about other related infrastructure that the software

on that server will need to do its job.

The various provisioners that interact with remote servers over SSH or

WinRM can potentially be used to pass such data by logging in to the server

and providing it directly, but most cloud computing platforms provide

mechanisms to pass data to instances at the time of their creation such that

the data is immediately available on system boot. For example:

= Amazon EC2: user_data or user_data_base64 on aws_instance,
aws_launch_template, and aws_launch_configuration.

= Amazon Lightsail: user_data on aws_lightsail_instance.

Provisioners are used to execute scripts on a local or remote machine as part

of resource creation or destruction. Provisioners can be used to bootstrap a

resource, cleanup before destroy, run configuration management, etc.

CONNECTION BLOCK:

You can create one or more connection blocks that describe how to access

the remote resource.

Connection blocks don't take a block label and can be nested within either a

resource or a provisioner.

= A connection block nested directly within a resource affects all of that
resource's provisioners.

= A connection block nested in a provisioner block only affects that
provisioner and overrides any resource-level connection settings.

The connection block supports the following arguments.

ARGUMENT REFERENCE:

TERRAFORM
Mr. RAM

e The connection block supports the following arguments. Some arguments
are only supported by either the SSH or the WinRM connection type.

Argument

type

user

password

host

port

timeout

script_path

Connection
Type

Both

Both

Both

Both

Both

Both

Both

Description

The connection type. Valid values are
"ssh" and "winrm" . Provisioners
typically assume that the remote system
runs Microsoft Windows when using
WinRM. Behaviors based on the SSH
target_platform will force Windows-
specific behavior for WinRM, unless
otherwise specified.

The user to use for the connection.

The password to use for the connection.

Required - The address of the resource to
connect to.

The port to connect to.

The timeout to wait for the connection to
become available. Should be provided as a
string (e.g., "30s" or "5m")

The path used to copy scripts meant for
remote execution. Refer to How
Provisioners Execute Remote Scripts below

for more details.

private key

certificate

agent

agent_identity

host_key

target_platform

https

SSH

SSH

SSH

SSH

SSH

SSH

WinRM

TERRAFORM
Mr. RAM

The contents of an SSH key to use for the
connection. These can be loaded from a
file on disk using the file function. This
takes preference over password if
provided.

The contents of a signed CA Certificate.
The certificate argument must be used in
conjunction with a private_key . These
can be loaded from a file on disk using the
the file function.

Set to false to disable using ssh-agent
to authenticate. On Windows the only
supported SSH authentication agent is

Pageant.

The preferred identity from the ssh agent
for authentication.

The public key from the remote host or
the signing CA, used to verify the
connection.

The target platform to connect to. Valid
values are "windows" and "unix" . If the
platform is set to windows , the default
script_path is
c:\windows\temp\terraform_%RAND%.cmd ,
assuming the SSH default shell is

cmd. exe . If the SSH default shell is
PowerShell, set script_path to
"c:/windows/temp/terraform_%RAND%.psl1l"

Set to true to connect using HTTPS
instead of HTTP.

TERRAFORM
Mr. RAM

HOW PROVISIONERS EXECUTE REMOTE SCRIPTS:

Provisioners which execute commands on a remote system via a protocol
such as SSH typically achieve that by uploading a script file to the remote
system and then asking the default shell to execute it.

Most importantly, there must be a suitable location in the remote filesystem
where the provisioner can create the script file. By default, Terraform
chooses a path containing a random number using the following patterns
depending on how target_platform is set:

= unix™: ltmp/terraform_%RAND%.sh

= “windows": C:/windows/temp/terraform %RAND%.cmd

PROVISIONERS TYPES:

FILE PROVISIONER:

The file provisioner copies files or directories from the machine running
Terraform to the newly created resource.

The file provisioner supports both ssh and winrm type connections.

ARGUMENT REFERENCE:

SOURCE: The source file or directory. Specify it either relative to the current
working directory or as an absolute path. This argument cannot be combined
with content.

CONTENT: The direct content to copy on the destination. If destination is a
file, the content will be written on that file. In case of a directory, a file
named tf-file-content is created inside that directory. We recommend using a
file as the destination when using content. This argument cannot be
combined with source.

DESTINATION: (Required) The destination path to write to on the remote
system.

TERRAFORM
Mr. RAM

EXAMPLE OF USAGE:
resource "‘aws_security_group' *"'sg_22 80" {
name ="sg_ 22"
ingress {

from_port =22

to_port =22
protocol ="tcp"
cidr_blocks = ["0.0.0.0/0"]
¥
egress {

from_port =0

to port =0
protocol ="-1"
cidr_blocks = ["0.0.0.0/0"]
¥
¥

resource ""aws_instance" ""web" {
ami = "ami-079db87dc4c10ac91"
Instance_type = "t2.micro"
key name = "ram"
tags = {

Name = "AppServerinstance"

}

TERRAFORM
Mr. RAM

connection {
type = "ssh"
user = "ec2-user"
private_key = file("~/.ssh/ram.pem")

host = self.public_ip

Copying file script.sh to /home/ec2-user/script.sh
provisioner *"*file {
source ="./script.sh"

destination = "/home/ec2-user/script.sh"

}
}

NOTE: Create “script.sh” file in the current configuration location and also
keep a “ram.pem” file in the user home directory location .ssh.

. LOCAL-EXEC PROVISIONER:

The local-exec provisioner invokes a local executable after a resource is
created. This invokes a process on the machine running Terraform, not on
the resource.

ARGUMENT REFERENCE:
COMMAND: (Required) This is the command to execute.

WORKING_DIR: (Optional) If provided, specifies the working directory
where command will be executed. The directory must exist.

INTERPRETER: (Optional) If provided, this is a list of interpreter arguments
used to execute the command. The first argument is the interpreter itself.

TERRAFORM
Mr. RAM

ENVIRONMENT: (Optional) block of key value pairs representing the
environment of the executed command. Inherits the current process
environment.

WHEN: (Optional) If provided, specifies when Terraform will execute the
command. For example, when = destroy specifies that the provisioner will
run when the associated resource is destroyed.

QUIET: (Optional) If set to true, Terraform will not print the command to be
executed to stdout, and will instead print **Suppressed by quiet=true"".
Note that the output of the command will still be printed in any case.

EXAMPLE OF USAGE:
resource "aws_instance' ""web" {
ami = "ami-079db87dc4c10ac91"
instance_type = "t2.micro"
key name = "ram"
tags ={
Name = "AppServerlnstance"

}

provisioner **local-exec™ {

command = "echo The server IP address is
${self.private_ip}"

k
k

TERRAFORM
Mr. RAM

MULTIPLE PROVISIONERS:
resource "‘aws_instance' "'web" {
ami = "ami-079db87dc4c10ac91"

instance_type = "t2.micro"

key name ="ram"
tags ={

Name = "AppServerinstance"
¥

provisioner "'local-exec™ {
command = "echo The server PubliclP address is
${self.private_ip}"

}

provisioner **local-exec™ {
command = "echo The server PrivatelP address is
${self.public_ip}"
¥
¥

THE SELF OBJECT:

e Expressions in provisioner blocks cannot refer to their parent resource by
name. Instead, they can use the special self object.

e The self object represents the provisioner's parent resource, and has all of
that resource's attributes.

For example, use self.public_ip to reference an aws_instance's public_ip
attribute.

TERRAFORM
Mr. RAM

3. REMOTE-EXEC PROVISIONER:

e The remote-exec provisioner invokes a script on a remote resource after it is
created. This can be used to run a configuration management tool, bootstrap
into a cluster, etc.

e To invoke a local process, see the local-exec provisioner instead. The
remote-exec provisioner requires a connection and supports both ssh and
winrm.

ARGUMENT REFERENCE:

INLINE: This is a list of command strings. The provisioner uses a default
shell unless you specify a shell as the first command (eg., #!/bin/bash). You
cannot provide this with script or scripts.

SCRIPT: This is a path (relative or absolute) to a local script that will be
copied to the remote resource and then executed. This cannot be provided
with inline or scripts.

SCRIPTS: This is a list of paths (relative or absolute) to local scripts that will
be copied to the remote resource and then executed. They are executed in the
order they are provided. This cannot be provided with inline or script.

SCRIPT ARGUMENTS:

e You cannot pass any arguments to scripts using the script or scripts
arguments to this provisioner.

e |f you want to specify arguments, upload the script with the file provisioner
and then use inline to call it.

EXAMPLE OF USAGE:
resource "‘aws_security_group' "'sg_22_ 80" {
name ="sg 22"
ingress {
from_port =22
to_port =22
protocol ="tcp"

cidr_blocks = ["0.0.0.0/0"]

TERRAFORM
Mr. RAM

¥
ingress {

from_port =80

to_port =80
protocol ="tcp"
cidr_blocks = ["0.0.0.0/0"]
by
egress {

from_port =0

to_port =0

protocol ="-1"
cidr_blocks = ["0.0.0.0/0"]

}
}

resource ""aws_instance' "'web" {
ami = "ami-079db87dc4c10ac91"

instance_type = "t2.micro"

key name = "ram"
tags = {

Name = "WEB-SERVER"
¥
connection {

type = "ssh"

user = "ec2-user"

private_key = file(*'~/.ssh/ram.pem")

TERRAFORM
Mr. RAM

host = self.public_ip
¥
provisioner "'remote-exec" {
inline =[
"sudo yum update -y",
"sudo yum install nginx -y",

"sudo systemctl start nginx",

]
¥
}

$terraform fmt
$terraform validate
$terraform plan
$terraform apply

$terraform destroy

