

 DEVOPS
 Mr. RAM

 KUBERNETES:

 Kubernetes is a portable, extensible, open-source platform for

managing containerized workloads and services, that facilitates both

declarative configuration and automation.

 Kubernetes also known as k8s or "kube". Kubernetes clusters can span

hosts across on-premise, public, private, or hybrid clouds.

 TRADITIONAL vs VIRTUALIZATION CONTAINERS:

TRADITIONAL DEPLOYMENT:

 Early on, organizations ran applications on physical servers.

 There was no way to define resource boundaries for applications in a

physical server, and this caused resource allocation issues.

 A solution for this would be to run each application on a different physical

server. But this did not scale as resources were underutilized, and it was

expensive for organizations to maintain many physical servers.

VIRTUALIZED DEPLOYMENT:

 It allows you to run multiple Virtual Machines (VMs) on a single physical

server's CPU.

 Virtualization allows applications to be isolated between VMs and provides

a level of security as the information of one application cannot be freely

accessed by another application.

 DEVOPS
 Mr. RAM

 Virtualization allows better utilization of resources in a physical server and

allows better scalability because an application can be added or updated

easily, reduces hardware costs, and much more.

 Each VM is a full machine running all the components, including its own

operating system, on top of the virtualized hardware.

CONTAINER DEPLOYMENT:

 Containers are similar to VMs, but they have relaxed isolation properties to

share the Operating System (OS) among the applications. Therefore,

containers are considered lightweight. Similar to a VM, a container has its

own filesystem, share of CPU, memory, process space, and more.

 As they are decoupled from the underlying infrastructure, they are portable

across clouds and OS distributions.

 CONTAINERS HAVE BECOME POPULAR BECAUSE THEY

PROVIDE EXTRA BENEFITS, SUCH AS:

 Agile application creation and deployment: increased ease and efficiency

of container image creation compared to VM image use.

 Continuous development, integration, and deployment: provides for

reliable and frequent container image build and deployment with quick and

efficient rollbacks (due to image immutability).

 Dev and Ops separation of concerns: create application container images

at build/release time rather than deployment time, thereby decoupling

applications from infrastructure.

 Observability: not only surfaces OS level information and metrics, but also

application health and other signals.

 Environmental consistency across development, testing, and

production: Runs the same on a laptop as it does in the cloud.

 Cloud and OS distribution portability: Runs on Ubuntu, RHEL, CoreOS,

on-premises, on major public clouds, and anywhere else.

 Application-centric management: Raises the level of abstraction from

running an OS on virtual hardware to running an application on an OS using

logical resources.

 Loosely coupled, distributed, elastic, liberated micro-services:

applications are broken into smaller, independent pieces and can be

deployed and managed dynamically – not a monolithic stack running on one

big single-purpose machine.

 Resource isolation: predictable application performance.

 Resource utilization: high efficiency and density.

 DEVOPS
 Mr. RAM

 KUBERNETES FEATURES:

 Containers are a good way to bundle and run your applications. In a

production environment, you need to manage the containers that run the

applications and ensure that there is no downtime. For example, if a

container goes down, another container needs to start.

 Kubernetes Provides:

SERVICE DISCOVERY AND LOAD BALANCING:

Kubernetes can expose a container using the DNS name or using their own

IP address. If traffic to a container is high, Kubernetes is able to load balance

and distribute the network traffic so that the deployment is stable.

STORAGE ORCHESTRATION:

Kubernetes allows you to automatically mount a storage system of your

choice, such as local storages, public cloud providers, and more.

AUTOMATED ROLLOUTS AND ROLLBACKS:

You can describe the desired state for your deployed containers using

Kubernetes, and it can change the actual state to the desired state at a

controlled rate. For example, you can automate Kubernetes to create new

containers for your deployment, remove existing containers and adopt all

their resources to the new container.

AUTOMATIC BIN PACKING:

You provide Kubernetes with a cluster of nodes that it can use to run

containerized tasks. You tell Kubernetes how much CPU and memory

(RAM) each container needs. Kubernetes can fit containers onto your nodes

to make the best use of your resources.

SELF-HEALING:

Kubernetes restarts containers that fail, replaces containers, kills containers

that don't respond to your user-defined health check, and doesn't advertise

them to clients until they are ready to serve.

SECRET AND CONFIGURATION MANAGEMENT:

Kubernetes lets you store and manage sensitive information, such as

passwords, OAuth tokens, and SSH keys. You can deploy and update secrets

and application configuration without rebuilding your container images, and

without exposing secrets in your stack configuration.

 DEVOPS
 Mr. RAM

 KUBERNETES ARCHITECTURE & COMPONENTS:

 A Kubernetes cluster consists of the components that represent the control

plane and a set of machines called nodes.

 A Kubernetes cluster consists of a set of worker machines, called nodes,

that run containerized applications. Every cluster has at least one worker

node.

 The worker node(s) host the Pods that are the components of the

application workload. The control plane manages the worker nodes and the

Pods in the cluster. In production environments, the control plane usually

runs across multiple computers and a cluster usually runs multiple nodes,

providing fault-tolerance and high availability.

KUBERNETES CLUSTER:

 A Kubernetes cluster consists of a set of worker machines, called nodes,

that run containerized applications. Every cluster has at least one worker

node.

 The Worker Node(s) host the Pods that are the components of the

application workload.

 The Control Plane manages the worker nodes and the Pods in the cluster.

 Cluster usually runs multiple nodes, providing Fault-Tolerance and

High Availability.

 DEVOPS
 Mr. RAM

CONTROL PLANE COMPONENTS:

 KUBE-APISERVER:

 Kube-APIserver is the main management point of the entire cluster,

handling internal and external requests.

 It processes REST operations, validates, and updates the corresponding

objects in etcd.

ETCD:

 Consistent and highly-available key value store used as Kubernetes'

backing store for all cluster data.

KUBE-SCHEDULER:

 It considers the resource needs of a pod, such as CPU or memory, along

with the health of the cluster.

 It schedules the pod to an appropriate compute node.

KUBE-CONTROLLER-MANAGER:

 Kube-Control-Manager runs the control process.

 A control process is a loop that focuses on making the desired state equal

to the current state for any application in any given instance of time.

CLOUD-CONTROLLER-MANAGER:

 The cloud controller manager links your cluster into your cloud

provider's API, and separates out the components that interact with that

cloud platform from components that only interact with your cluster.

 The following controllers can have cloud provider dependencies:

 Node controller:

For checking the cloud provider to determine if a node has been

deleted in the cloud after it stops responding

 Route controller:

For setting up routes in the underlying cloud infrastructure

 Service controller:

For creating, updating and deleting cloud provider load balancers

 DEVOPS
 Mr. RAM

NODE COMPONENTS:

KUBELET:

 An agent that runs on each node in the cluster. It makes sure that

containers are running in a Pod.

 When the control plane needs something to happen in a node, the

kubelet executes the action.

KUBE-PROXY:

 Kube-proxy is a network proxy that runs on each node in your cluster.

 It maintains network rules on nodes. These network rules allow

network communication to your Pods of your cluster.

CONTAINER RUNTIME:

 The container runtime is the software that is responsible for running

containers.

 Kubernetes supports: Docker, containerd, CRI-O, and Kubernetes CRI

(Container Runtime Interface).

KUBERNETES NODES & PODS:

NODES:

 A node is a worker machine in Kubernetes and may be a VM or

physical machine, depending on the cluster.

 Kubernetes runs your workload by placing containers into Pods to run on

Nodes. A node can have multiple Pods.

 A node includes the kubelet, a container runtime, and kube-proxy.

 Node names are uniqueness in the cluster.

 DEVOPS
 Mr. RAM

PODS:

 A pod is the smallest & simplest Kubernetes object. It represents a single

instance of a running process in your cluster.

 Pods contain one or more containers, such as Docker containers.

 When a Pod runs multiple containers, the containers are managed as a

single entity and share the Pod's resources.

 Pods also contain shared networking and storage resources for their

containers

NOTE: Running multiple containers in a single Pod is an advanced use case.

