ANSIBLE

HANDLING TASKS

DEVOPS
Mr. RAM

+ HANDLING TASKS:

In Ansible, handlers are typically used to start, reload, restart, and stop
services.

Sometimes you want a task to run only when a change is made on a
machine.

E.g.: you may want to restart a service if a task updates the configuration of
that service, but not if the configuration is unchanged. Ansible uses handlers
to address this use case.

Handlers are tasks that only run when notified.

By default, handlers are executed last regardless of their location in the
playbook.

A SINGLE TASK AND A HANDLER:
- hosts: webservers
become: true
become_user: root
tasks:
- name: Install the latest version of Apache
dnf:
name: httpd
state: latest
notify:
- Start Apache
handlers:
- name: Start Apache
service:
name: httpd

state: started

DEVOPS
Mr. RAM

MULTIPLE TASKS AND HANDLERS:
- hosts: webservers
become: true
become_user: root
tasks:
- name: Install the latest version of Apache
yum:
name: httpd
state: latest
- name: Configure Apache
copy:
src: /home/raju/index.html
dest: /var/www/html
owner: apache
group: apache
mode: 0644
notify:
- Configure Firewall
- Start Apache
handlers:
- name: Start Apache
service:
name: httpd

state: started

DEVOPS
Mr. RAM

- name: Configure Firewall
firewalld:
permanent: yes
Immediate: yes
service: http

state: enabled

» HANDLING TASK FAILURE:

e Ansible evaluates the return code of each task to determine whether the task
succeeded or faild.

e Normally, When a task fails Ansible immediately aborts the test of the play
on that host, skipping all subsequent tasks.

Ignoring Task Failure:

By default a task fails, the play is aborted. However, this behavior can be
overridden by ignoring faild tasks.

You can use the ignore_error keyword in a task to accomplish this.

Example:
- hosts: server

become: true

become_user: root

tasks:

- name: Restart a service
service:
name: not a service

state: restart

DEVOPS
Mr. RAM

- name: Copy a script
copy:
src: /tmp/script.sh

dest: /opt

$ansible-playbook --syntax-check taskl.yml
$ansible-playbook taskl.yml -K

» IGNORE_ERRORS:

e Ansible console output becomes much harder to inspect because your it will
contain lots of red (failed) task around, so scrolling to the right line would be
much harder.

e [t will trigger Ansible debugger if you configured
ANSIBLE_STRATEGY=debug, even if you are likely not to want this
making the use of debugger kinda useless if you have lots of such

ignore_errors.
$vi task2.sh
- hosts: webservers
become: true
become_user: root
tasks:
- name: Restart a service
service:
name: not a service
state: restart

ignore_errors: yes

DEVOPS
Mr. RAM

- name: Copy a script

copy:
src: /tmp/script.sh

dest: /opt

$ansible-playbook --syntax-check task2.yml
$ansible-playbook task1l.yml -K

REGISTER:

e Ansible register is a way to capture the output from task execution and store
it in a variable.

» FAILED_WHEN AND CHANGED_WHEN:

e e are going to see how to use conditional statements of Ansible such as
when, changed_when, failed_when and where to use them appropriately and
how it works. By these conditional modules, Ansible provides a way for us
to define when should ansible run a certain task or consider the executed
task as Success or failure.

e Long Story Short, these modules give us a way to make ansible do
something when a certain condition is met or satisfied.

e The primary purpose of the failed_when and changed_when statements are
to determine whether the task is actually successful or failure

e |et us cover each conditional statements one by one with examples.

DEVOPS
Mr. RAM

FAILD_WHEN:
e Use failed_when to make the playbook fail checking a condition.
$vi task3.yml
- hosts: webservers
become: true
become _user: root
tasks:
- name: Restart a service
service:
name: not a service
state: restart

ignore_errors: yes

- name: Copy a script
copy:
src: /tmp/script.sh

dest: /tmp
- name: Run the script
shell: sh /tmp/script.sh

register: command_result

- debug: msg="{{ command_result.stdout }}"

$vi task4.sh
- hosts: webservers
become: true
become_user: root
tasks:
- name: Restart a service
service:
name: not a service
state: restart
ignore_errors: yes
- name: Copy a script
copy:
src: /tmp/script.sh
dest: /tmp
- name: Run the script
shell: sh /tmp/script.sh
register: command_result

failed_when: "'raju’ in command_result.stdout"
- debug: msg="{{ command_result.stdout }}"
- name: Restart the HTTPD
service:
name: httpd

state: restarted

DEVOPS
Mr. RAM

DEVOPS
Mr. RAM

CHANGED_WHEN:

e The changed_when keyword can be used to control when a task reports that
it has changed.

- hosts: webservers
become: true
tasks:
- name: Restart a service
service:
name: not a service
state: started
ignore_errors: yes
- name: Copy a script
copy:
src: /tmp/script.sh
dest: /tmp
- name: Run the script
shell: sh /tmp/script.sh
register: command_result

changed_when:

notify:

- restart_apache

success' in command_result.stdout™

handlers:
- name: restart_apache
service:
name: httpd

state: restarted

