27-02-2025
Literals
=========
-> Literal is a value

-> Different types of literals are:
	1) Integral Literals
	2) Floating-point Literals
	3) Complex Literals
	4) Boolean Literals --> True, False
	5) String Literals --> '', "", ''' '''

1) Integral Literals

-> in 4-ways:
	1) Decimal Literals
	2) Binary Literals
	3) Octal Literals
	4) Hexadecimal Literals
-> Decimal Literal is base-10 literal.
	we can able to define the decimal data using the total of 10 letters only.
		those are: 0 to 9
Ex: 1, -1, 123456 etc.
-> The PVM (Python Virtual Machine) can understand any number/integer as decimal by default.
That is the reason, print() can print any integer literal in decimal format only.
-> Binary Literal is base-2 literal.
	we can allow to define the number using only 2 letters.
	Those are: 0 and 1
Ex: 10110001101, 101 ==> Invalid binary literals.
-> That we need to process the binary, that number must be prefixed with '0b' or '0B'
Ex: 0b10110001101, 0B101 ==> Valid Binary Literals
-> Octal literal is base-8 literal.
	we can allow to define the octal literal with the total of 8 letters.
	those are: 0 to 7
-> The Octal literal can always be prefix with '0o' or '0O'.
Ex: 0o1276, 0O123 ==> valid literals
-> Hexadecimal literal is the base-16 literal.
	we can allow to define the hexadecimal with the total 16 letters
	Those are: 0 to 9 (10) and alphabets (a/A to f/F) (6)
Here:
	a ==> 10, b ==> 11, c ==> 12, d ==> 13, e ==> 14, f ==> 15
-> This is also called as "Alpha-numerical number".
-> Can always be prefixed with "0x" or "0X".
Ex: 0x1234, 0XAF123 ==> valid hexadecimals

a = 1023
b = 1010101
c = 0B1010101 # binary
d = 1276
e = 0O1276 # octal
f = 0x1234
g = 0XAF12

print(a)
print(b)
print(c) # binary number internally convert into decimal automatically
print(d)
print(e) # octal value internally convert into decimal automatically
print(f)
print(g) # hexadecimals can convert into decimal and then print by the print()
print(0xa,0xb,0xc,0xd,0xe,0xf)
print(0xg)

2) Floating-point Literals

-> Floating point literals can be defined in two ways:
	1) using decimal point
	2) exponential/scientific format.

Note:
====
-> binary, octal and hexadecimal literals never use to define float.
Ex: 0b1011.101 ==> error

a = 123.234
b = 1e5
c = 1.2e-7
d = 0b1101.1101
d = 0o123.321
d = 0x123.af
d = 0b1101e-3

print(a)
print(type(b))
print(type(c))

3) Complex Literals

Real part:

	real part can be with either binary or octal or hexadecimal or decimal or float or boolean
Imaginary part:

	imaginary part can be with only decimal or float.

a = 0b11001 + 12.3j
b = 0o123 - 12j
c = 0x1af2 + 1.23j

d = 123 - 0b11001j
d = 123 + 0o123j
d = 321 - 0Xaf12j
d = True + 123j
e = 12 - Falsej

print(type(a))
print(type(b))
print(type(c))
print(type(d))
