OOPs:
=====
-> Object Oriented Programming System
-> High-level programming languages
	classified into three types:
		1) Functional Programming Languages : C, Python
		2) Object Based Programming Languages : VB Script
		3) Object Oriented Programming Languages : C++, Python, Java, C# etc.
-> When programming languages are with functions (built-in and/or user-defined) those are called as "Functional programming languages".
-> OOPs concepts and Principles:
	1) Class
	2) Object
	3) Method
	4) Constructor
	5) Destructor
	6) Garbage Collector
	Principles:
		1) Encapsulation
		2) Polymorphism
		3) Inheritance
		4) Abstraction

What is Class?

-> Class is a logical entity (which is not real)
-> class is one of the non-primitive datatype
class is a collection of attributes (variables/data) and/or methods (behaviors)
-> keyword: "class"
Syntax:
	class Class-name:
		attributes/variables/data
		methods

Note:

class name should be "capitalize case".

Ex: Land
Home ==> 3BHK
Plan/Design : Design Engineers
	Plans on Sheet (Logic)
	(Not-real object) ==> class
Home construction
	on land ==> Real entity ==> Object
	
Example for class and Object:

	Person wants to join in one organization
	Organization can create candidature in organization portal
	Proforma:
		user-name	: Rajesh
		age		: 32
		gender		: Male
		previous exp	: 5 yrs
		previous designation : Sr. Programmer
		current designation : Tech Lead
		current salary	: 20 LPA
		working domain : Banking etc.

Class is a collection/block of data and/or behaviors (method)
-> Logical entity
does not required any memory
-> to create a class,
we need to use "class" keyword.
Syntax:
	class Class-Name:
		data
		methods
-> Class is a template
-> Class is a blueprint

When we want to access any data or method from the class, we must be required an "object".
-> Object is the reference to the class.
-> Object is a physical entity.
Requires a memory.
Syntax for the object creation:

	object-name = Class-name()

Object name must be in camel-case representation.

Accessing of members of the class using an object:
--
Object-name.membername

Note:

To access the members of the members of the class, we can use "." operator.

Class with data:

-> data ==> attribute/variable

class with only data
class MyClass:
 a = 100 # members
 b = 'x'
 c = 1.23

myObject = MyClass()

print("The data of a class = ")
print(myObject.a)
print(myObject.b)
print(myObject.c)

class with methods:

Method Vs Functions:

method always allowed to define within the class only.
Whereas the function always allowed to define in outside the class only.

method in the class can accept "self" keyword as parameter while the definition.
But the function is not.

class Student:
 def profile(self):
 name = "Krishna"
 roll = 12
 division = 10

 print("Name = ",name)
 print("Roll = ",roll)
 print("Division = ",division)

student = Student()
student.profile()

Ways to create methods:

1) Methods without parameters
2) Methods with parameters

class Student:
 def profile(self,name,roll):
 print("Name of the student = ",name)
 print("Roll of the student = ",roll)

stu = Student()

stu.profile("Karthik",123) # method call
stdentName = "Rahul"
studentRoll = 102
stu.profile(stdentName,studentRoll)
stu.profile(roll=studentRoll,name=stdentName)

3) methods without return type
4) methods with return type

class Calculator:
 def addition(self):
 a = 1021
 b = 2031

 return (a+b)

calci = Calculator()
s = calci.addition()
print("The sum = ",s)
print(calci.addition())

