
Abh
i

Cloud Intro Notes 

Imagine you have a cutting-edge idea in 2023 and need to build a solution using modern technology. 
In a traditional IT environment, you might request three separate servers—one for the web server, 
one for the application server, and one for the database—following a classic three-tier architecture. 
This process involves multiple steps and dependencies: 

1. Submit a hardware order to your IT department.

2. Arrange for essential requirements such as power, cooling, rack space, and physical security.

3. Coordinate with your operational and security teams to install the necessary software.

4. Receive access to set up and run your new technology solution.

This entire process can take anywhere from several days to months, depending on approval 
processes and hardware availability. 

In this traditional model, you are responsible for managing multiple layers of infrastructure, 
including: 

• Networking and Internet access

• Storage and security (physical and access control)

• Server hardware and applications

• Database installation and configuration

• Governance, compliance, patches, migrations, upgrades, and environmental considerations
(cooling and power)

While this approach provides increased security, customization, and control through direct 
management of every system facet, it also comes with significant drawbacks. The overall cost is high 
relative to the value, and scaling is not immediate. For example, doubling the number of servers—
from three to six—may incur delays of days, weeks, or even months. 

Cloud Computing: Definition and Operation 

Cloud computing offers IT resources on demand, including compute power, application hosting, 
database services, and networking. It uses an API-driven model, meaning resources can be 
provisioned automatically when a client sends a request—whether through a website, command-line 
interface, or API. 

For example, if you need a MySQL database with one terabyte of storage, four CPUs, and 32 GB of 
RAM, cloud providers like AWS automatically configure and deploy these resources. Instead of 

AWS Notes by Abhi

AWS Notes by Abhi



Abh
i

investing in physical hardware that is hard to return or repurpose, you only pay for the resources you 
use over the exact period they are active. 

Cloud Deployment Models 

Cloud consumption generally falls into three primary models: 

1. All-in-Cloud:
Organizations opt to run all workloads on cloud providers like AWS. This model is popular
among startups and modern enterprises because it enables scalable, on-demand resource
allocation without the need to manage physical hardware.

2. On-Premises (Private Cloud):
Organizations maintain their own data centers and use virtualization technologies to manage
resources internally. This model requires complete oversight of the entire stack—from
hardware to software—and is often selected by companies with strict security and
compliance mandates.

3. Hybrid Cloud:
This model combines cloud and on-premises resources. Some workloads run in the cloud,
while others remain in traditional data centers. Hybrid clouds are designed to leverage the 
best of both worlds, usually connected through high-speed links. It is important to note that 
hybrid cloud differs from multi-cloud, which involves using services from multiple cloud
providers.

AWS vs. Traditional IT 

Imagine building your own kitchen to make a pizza from scratch—you must gather ingredients, buy 
equipment, and manage every detail. This is similar to setting up a traditional IT environment where 
you purchase and configure hardware such as servers, network cables, power, and cooling. 
Alternatively, ordering a pizza from a restaurant like Pizza Hut saves you the hassle. Similarly, AWS 
takes care of the underlying operations for you. With AWS, you simply use ready-to-go services 
rather than managing the physical infrastructure yourself. 

When using a conventional data center, you need to request server hardware, coordinate with 
operations and security teams, and wait days or even months for access. Consider the following 
diagram that compares these traditional IT setup requirements: 

AWS Notes by Abhi

AWS Notes by Abhi



Abh
i

In contrast, AWS automates many of these tasks. Here's what changes when you choose AWS: 

• You interface with pre-built services that include networking, cooling, and power.

• You access virtual machine services, database services, and application services that are
ready to configure.

AWS Service 
Category Use Case Example 

Compute 
Running virtual machines and scaling 
applications 

EC2, 
Lambda 

Storage Storing and accessing data 
Amazon S3, 
EFS 

Networking and Content 
Delivery 

Managing network traffic, CDN, and
firewall configurations

Amazon 
VPC, 
CloudFront 

Database 
Managing various database needs 
(relational & NoSQL)

RDS, 
DynamoDB 

Security, Identity, & Compliance 
Ensuring secure access and compliance 
measures 

IAM, AWS 
Shield 

Management and Governance 
Monitoring, managing cost, and 
automating infrastructure 

CloudWatch, 
AWS Config 

AWS Notes by Abhi

AWS Notes by Abhi



Abh
i

Ways to Interact with AWS 

There are three primary methods to interact with AWS: 

1. Management Console
The AWS Management Console is a web-based interface that offers an intuitive way to
explore and create resources. It’s ideal for beginners and for validating your interactions with
AWS services.

2. AWS Command Line Interface (CLI)
The AWS CLI lets you execute commands directly in your terminal to retrieve information or
manage resource

3. Software Development Kits (SDKs)
AWS offers SDKs for several programming languages such as Python, Java, JavaScript, and
Ruby. These SDKs enable you to integrate AWS services directly into your applications, which
is particularly useful for programmatically managing AWS resources.

Benefits of Cloud 

1. Converting Capital Expenditure (CAPEX) into Operating Expense (OPEX)

One of the major advantages of utilizing AWS is the ability to transform substantial upfront hardware
investments into manageable monthly operating expenses. Rather than investing heavily in physical
servers and infrastructure, you can use AWS to acquire virtual machines on a pay-as-you-go basis.
This means you’re billed only for the resources you actually use and can efficiently scale down when
those resources are no longer required.

Upfront expense: CAPEX 

Variable Expense OPEX 

2. Moving Away from Data Center Dependence

A significant benefit of AWS is that it alleviates the need to manage your own data centers. For many 
organizations, such as insurance companies, running a data center is not a core competency. By 
shifting these responsibilities to AWS, you can concentrate on your primary business objectives, such 
as customer service and innovative application development. 

3. Enhanced Scalability on Demand

Traditional data centers are often constrained by fixed hardware capacities and limited vendor 
supply, forcing companies to anticipate future requirements. AWS offers dynamic scalability, allowing 
you to rapidly adjust your virtual machines or database resources as demand fluctuates. This 
flexibility reduces risks associated with over- or under-provisioning. 

Stop Guessing Capacity 

AWS Notes by Abhi

AWS Notes by Abhi



Abh
i

4. Leveraging Economies of Scale

AWS capitalizes on massive economies of scale, meaning that as your consumption of cloud services 
increases, the cost per unit decreases. For instance, while the initial cost per gigabyte might be 
higher, high-volume usage can lead to significantly reduced rates. AWS’s continual push to lower 
prices on services like Amazon S3 further enhances cost savings and budget predictability. 

Cloud Design Principles: 

1. Designing for Failure

2. Decoupling Components

3. Implementing Elasticity

4. Thinking in Parallel

Designing for Failure 

When building any system, planning for failure is crucial. Consider a car: if one out of four wheels
fails and the car stops functioning, that single point of failure can be catastrophic. Similarly, in cloud
systems, the failure of a single component should not compromise the entire system.

To mitigate such risks, we design systems with redundancy and ensure they can automatically
recover from failures. Embracing the philosophy that "everything fails all the time" (as noted by
Werner Vogels) encourages us to build resilient systems that assume failure and plan robust recovery
strategies.

Decoupling Components 

The second principle is to decouple system components so that a failure in one part does not affect 
others. In tightly coupled architectures, a single fault can trigger a cascade of failures. In contrast, a 
loosely coupled system uses techniques such as queuing mechanisms and independent scaling, 
ensuring that each component operates in isolation from failures in connected parts. 

For instance, if a front-end web server receives a flood of customer requests, decoupling the back 
end using a queue allows the server to manage the load at its own pace. This approach helps prevent 
data loss and maintains system integrity, especially under variable loads. 

Implementing Elasticity 

Elasticity is one of the standout advantages of AWS. Traditional data centers require significant time 
and resources to scale capacity up or down. AWS, however, enables you to automatically adjust 
resource allocation based on demand. When additional computing power is needed, AWS can 
quickly provision more resources and release them once demand decreases. 

AWS Notes by Abhi

AWS Notes by Abhi



Abh
i

This elasticity improves performance during traffic surges while also optimizing costs since you only 
pay for what you use. According to AWS documentation, elasticity involves the automated 
acquisition and release of resources, ensuring efficiency and cost-effectiveness 

Thinking in Parallel 

The final principle is to embrace parallel processing rather than a strictly sequential approach. In a 
serial processing model, a prolonged task on a single server can become impractical. By contrast, 
parallel processing distributes tasks across multiple servers, drastically reducing processing time. 

For example, a task that would take 36 hours on a single server can be divided among three servers 
to finish in 12 hours—or even among 36 servers to complete it in about 1 hour. AWS's ability to 
rapidly scale instances makes parallel processing a highly effective method for managing large tasks 
efficiently. 

AWS Notes by Abhi

AWS Notes by Abhi




