
Python - Packages

We organize a large number of files in different folders and subfolders

based on some criteria, so that we can find and manage them easily.

In the same way, a package in Python takes the concept of the modular

approach to next logical level.

As you know, a module can contain multiple objects, such as classes,

functions, etc.

A package can contain one or more relevant modules. Physically, a

package is actually a folder containing one or more module files.

A package is a collection of modules. A Python package can have sub-

packages and modules.

A directory must contain a file named __init__.py in order for Python to

consider it as a package. This file can be left empty but we generally

place the initialization code for that package in this file.

Importing module from a package

We can import modules from packages using the dot (.) operator.

For example: import <moduleName>

Let's create a package named mypackage, using the following steps:

 Create a new folder named D:\MyApp.

 Inside MyApp, create a subfolder with the name 'mypackage'.

 Create an empty __init__.py file in the mypackage folder.

 Using a Python-aware editor like IDLE, create modules greet.py and

functions.py with the following code:

https://www.tutorialsteacher.com/python/python-module

That's it. We have created our package called mypackage. The following

is a folder structure:

Importing a Module from a Package

Now, to test our package, navigate the command prompt to

the MyApp folder and invoke the Python prompt from there.

Import the functions module from the mypackage package and call its

power() function.

It is also possible to import specific functions from a module in the

package.

__init__.py

The package folder contains a special file called __init__.py, which

stores the package's content. It serves two purposes:

1. The Python interpreter recognizes a folder as the package if it
contains __init__.py file.

2. __init__.py exposes specified resources from its modules to be

imported.

An empty __init__.py file makes all functions from the above modules

available when this package is imported. Note that __init__.py is

essential for the folder to be recognized by Python as a package. You
can optionally define functions from individual modules to be made

available.

The __init__.py file is normally kept empty. However, it can also be

used to choose specific functions from modules in the package folder

and make them available for import. Modify __init__.py as below:

The specified functions can now be imported in the interpreter session

or another executable script.

Create test.py in the MyApp folder to test mypackage.

Note that functions power() and SayHello() are imported from the

package and not from their respective modules, as done earlier. The

output of the above script is:

Install a Package Globally

Once a package is created, it can be installed for system-wide use by
running the setup script. The script calls setup() function from

the setuptools module.

Let's install mypackage for system-wide use by running a setup script.

Save the following code as setup.py in the parent folder MyApp. The

script calls the setup() function from the setuptools module.

The setup() function takes various arguments such as name, version,

author, list of dependencies, etc. The zip_safe argument defines

whether the package is installed in compressed mode or regular mode.

Now execute the following command to install mypackage using

the pip utility. Ensure that the command prompt is in the parent folder,

in this case D:\MyApp.

Now mypackage is available for system-wide use and can be imported

in any script or interpreter.

You may also want to publish the package for public use. PyPI (stands

for Python Package Index) is a repository of Python packages.

https://www.tutorialsteacher.com/python/pip-in-python
https://pypi.org/

	Python - Packages
	Importing module from a package
	Importing a Module from a Package
	__init__.py
	Install a Package Globally

