
Nested try - block :

The concept of defining one try block inside another try block is know as a "Nested

try block".

Syntax

try:

 ========

 try:

 ========

 except:

 ========

except:

 =========

We have 2 types of try-blocks.
 1. Outer try block

 2. Inner try block

 A try block which contains another try block is known as outer-try block.

 A try block which is defined in another try-block is known as a inner-try

block.

 If exception is occured in outer try block then control will goto outer except

block.

 If outer try except block is not handled that exception then program will be

terminated abnormally.

 If exception is occured in the inner try block then control will goto inner try

related except block.

 If inner try related except block is not handled that exception then controll

will goto the outer try related except block.

 If outer try related except block is also not handled that exception then

program will be terminated abnormally.

Example 1: If no exception is raised then executes try block and finally block

statements.

try:

 print('in try1')

 try:

 print('in try2')

 try:

 print('in try3')

 except:

 print('in except3')

 finally:

 print('in finally3')

 except:

 print('in except2')

 finally:

 print('in finally2')

except NameError:

 print('in except1')

finally:

 print('in finally1')

Output

Example 2: If RuntimeError is not handled properly then throws exception

try

 print('in try1')

 try:

 print('in try2')

 print(10/0)

 try:

 print('in try3')

 except:

 print('in except3')

 finally:

 print('in finally3')

 except ValueError:

 print('in except2')

 finally:

 print('in finally2')

except NameError:

 print('in except1')

finally:

 print('in finally1')

Output:

Note: Here our program excution terminated abnormally because Runtime

Exception is not handled properly.

Example 3: What is output Indentify ?

try:

 print('try-1')

 a = 10 / 2

 try:

 print('try-2')

 b = 10 / 0

 except TypeError:

 print('except-2')

except:

 print('except-1')

print('end line')

Output:

Example 4: What is output Indentify ?

try:

 print('try-1')

 a = 10 / 2

 try:

 print('try-2')

 b = 10 / 0

 except TypeError:

 print('except-2')

 finally:

 print('finally-2')

except NameError:

 print('except-1')

finally:

 print('finally-1')

print('end line')

Output:

Example 5: What is output Indentify ?

try:

 print('try-1')

 a = 10 / 2

 try:

 print('try-2')

 b = 10 / 0

 except TypeError:

 print('except-2')

 finally:

 print('finally-2')

except NameError:

 print('except-1')

except:

 print('default except')

finally:

 print('finally-1')

print('end line')

Output:

else: block

 We can also use the else statement with the try-except statement in which,

we can place the code which will be executed in the scenario if no exception

occurs in the try block.

 The syntax to use the else statement with the try-except statement is given

below.

Syntax:

Example 6: How to read the data from given file using exception handling?

fileObject = None

try:

 fileObject = open('demo.txt' , 'r')

except:

 print('file not found') # if demo.txt file not available

else:

 data = fileObject.read() # if demo.txt file available

 print(data)

finally:

 if fileObject:

 fileObject.close()

Output 1:

Output 2:

The except statement using with "exception variable"

 We can use the exception variable with the except statement. It is used by

using the "as" keyword.

 This object will return the cause of the exception.

Syntax:

try:

 pass

 except ExceptionName as e:

 pass

Example 7: return the cause of exception into a exception variable using as

keyword

try:

 a = int(input("Enter a value :"))

 b = int(input("Enter b value ::"))

 c = a/b

 print(c)

Using exception object with the except statement

except Exception as e:

 print("can't divide by zero")

 print(e)

else:

 print("Hi I am else block")

Output 1:

Output 2:

TYPES OF EXCEPTIONS :

 Predefined Exceptions

 Userdefined Exceptions

1. Predefined Exceptions :

 The RuntimeError representation classes which are present in python

software are known as "predefined execution".

 For example : ValueError, ZeroDivisionError , NameError , etc…

 These are raised automatically when ever corresponding RuntimeError is

occured.

2. User defined Exceptions:

 Any user defined class which is extending by any one of the predefined

exception class is known as a user defined exception.

Syntax:

 class Userdefined_Exception_className(Predefined_exception_class) :

 ======= =======

 ======= =======

Example:

class MyClass(ZeroDivisionError):

 pass

 User defined exceptions will not "raise" automatiacally. So that we have to

write those exceptions explicitly.

 NOTE : Creating the RuntimeError representation class object explicitly is

known as a "Raising the Exception"

 By using "raise" keyword, we can raise the userdefined exceptions

explicitly.

Syntax: raise userdefined_exception_name

 After raising the exception , we can handle that exception by using "try &

except” blocks.

Example 8: How to creating User defined exceptions and raise those exceptions

explicitly.

class Error(Exception):

 '''base class for other exceptions'''

 pass

class ValueTooLargeError(Error):

 '''raised when input value is too large'''

 pass

class ValueTooSmallError(Error):

 '''raised when input value is too small'''

 pass

number = 10

while True:

 try:

 i_num = eval(input("Enter a Number : "))

 if i_num < number:

 raise ValueTooSmallError

 elif i_num > number:

 raise ValueTooLargeError

 else :

 print("Both are Equal numbers.")

 break

 except ValueTooSmallError:

 print("This value is too small, try again")

 except ValueTooLargeError:

 print("This value is Too Large, try again")

print("congrats")

Output:

Practice Examples:

Example 9: Find out the given number is within range or not ?

try:

 x = int(input('Enter a number upto 100: '))

 if x > 100:

 raise ValueError(x)

except ValueError:

 print(x, "is out of allowed range")

else:

 print(x, "is within the allowed range")

Output:

