

Python Constructor Concept:

====== ========== =======

A constructor is a special type of method (function) which is used to initialize the

instance members of the class.

In C++ or Java, the constructor has the same name as its class, but it treats

constructor differently in Python. It is used to create an object.

Creating the constructor in python:

In Python, the method the __init__() represents the constructor of the class.

This method is called when the class is instantiated (object created).

It accepts the self-parameter as a first argument which allows accessing the

attributes or method of the class.

We can pass any number of arguments at the time of creating the class object,

depending upon the __init__() definition.

It is mostly used to initialize the class attributes. Every class must have a

constructor, even if it simply relies on the default constructor.

Example:

class Employee:

 def __init__(self, name, id):

 self.id = id

 self.name = name

 def display(self):

 # print("ID: %d \nName: %s" % (self.id, self.name))

 # print("ID: {1} \nName: {0}".format(self.name,self.id))

 print(f"ID: {self.id} \nName: {self.name}")

emp1 = Employee("John", 101)

emp2 = Employee("David", 102)

accessing display() method to print employee 1 information

emp1.display()

accessing display() method to print employee 2 information

emp2.display()

Output:

ID: 101

Name: John

ID: 102

Name: David

Counting the number of objects of a class

--->> The constructor is called automatically when we create the object of the

class.

Consider the following example.

Example:

class Student:

 count = 0

 def __init__(self):

 Student.count = Student.count + 1

s1=Student()

s2=Student()

s3=Student()

print("The number of students:",Student.count)

Output:

The number of students: 3

Constructors can be of two types.
1. Parameterized Constructor

2. Non-parameterized Constructor

Constructor definition is executed when we create the object of this class.

Constructors also verify that there are enough resources for the object to perform

any start-up task.

Python Non-Parameterized Constructor

--->> The non-parameterized constructor uses when we do not want to manipulate

the value or the constructor that has only self as an argument.

Example:

class Student:

 # Constructor - non parameterized

 def __init__(self):

 print("This is non parametrized constructor")

 def show(self,name):

 print("Hello",name)

student = Student()

student.show("John")

Python Parameterized Constructor:

---->> The parameterized constructor has multiple parameters along with the self.

Consider the following example.

class Student:

 # Constructor - parameterized

 def __init__(self, name):

 print("This is parametrized constructor")

 self.name = name

 def show(self):

 print("Hello",self.name)

student = Student("John")

student.show()

Output:

This is parametrized constructor

Hello John

Python Default Constructor

--->> When we do not include the constructor in the class or forget to declare it,

then that becomes the default constructor.

--->> It does not perform any task but initializes the objects.

Example:

class Student:

 roll_num = 101

 name = "Joseph"

 def display(self):

 print(self.roll_num,self.name)

st = Student()

st.display()

Output:

101 Joseph

More than One Constructor in Single class

--->> Let's have a look at another scenario, what happen if we declare the two

same constructors in the class.

Example:

class Student:

 def __init__(self):

 print("The First Constructor")

 def __init__(self):

 print("The second contructor")

st = Student()

Output:

The Second Constructor.

--->> In the above code, the object st called the second constructor whereas both

have the same configuration.

--->> The first method is not accessible by the st object.

--->> Internally, the object of the class will always call the last constructor if the

class has multiple constructors.

