
Python Abstract Concept:
 Today here, we are going to discuss the concept of Abstraction in Python for

the Object-Oriented Programming approach.

 Basically, Abstraction focuses on hiding the internal implementations of a

process or method from the user.

 In this way, the user knows what he is doing but not how the work is being

done.

 Let us dig a bit deeper into the topic to find its importance in real life and

programming.

What is Abstraction in Python?

 In Object Oriented Programming, Inheritance, Polymorphism and

Encapsulation go hand in hand. But Abstraction is also an essential element

of OOP.

 For example, people do not think of a car as a set of thousands of individual

parts.

 Instead they see it as a well-defined object with its own unique behavior.

 This abstraction allows people to use a car to drive without knowing the

complexity of the parts that form the car.

 They can ignore the details of how the engine transmission, and braking

systems work.

 Instead, they are free to utilize the object as a whole.

 A powerful way to manage abstraction is through the use of hierarchical

classification.

 This allows us to layer the semantics of complex systems, breaking them into

more manageable pieces.

 From the outside, a car is a single object. Once inside, you see that the car

consists of several subsystems: steering, brakes, sound system, seat belts,

etc.

 In turn, each of these subsystems is made up of smaller units.

 The point is that we manage the complexity of the car (or any other complex

system) through the use of hierarchical abstractions.

 This can also be applied to computer programs using OOP concepts. This is

the essence of object-oriented programming.

Steps to Create Abstract Classes and Methods in Python:

 To declare/create an Abstract class, we firstly need to import the "abc"

module.

 This "abc" module contains "ABC" class (i.e, Abstract Base Class) and

"abstractmethod" decorator.

 We can create userdefined abstract class by using predefined abstract class.

 Create required abstract methods by using "abstractmethod" decorator with

@ symbol on top of methods.

 Any classes which contains abstract methods then called as abstract classes.

 We can not instanciate/create objects for abstract classes.

 If we are triying to create objects for abstract classes then it throws

exception like

TypeError: Can't instantiate abstract class Sample with abstract methods task

 Any method which is just define/declared structure with out body

implimentation statements and contains @abstractmethod decorator on top

of it then called as abstract method.

 Any class which contains all abstract methods implimentations properly then

that class is called as "Concrete" class.

 We can create objects for Concrete class and we can access members of

class.

Let us look at an example.

Example:

from abc import ABC, abstractmethod

class abs_class(ABC):

 #abstractmethod

 def m1(self):

 =====

 Here, abs_class is the abstract class inside which abstract methods or any

other sort of methods can be defined.

 As a property, abstract classes can have any number of abstract methods and

any number of other methods.

For example we can see below:

from abc import ABC, abstractmethod

class abs_class(ABC):

 #normal method

 def method(self):

 #method definition

 @abstractmethod

 def Abs_method(self):

 #Abs_method definition

--->> Here, method() is normal method whereas Abs_method() is an abstract

method implementing @abstractmethod from the abc module.

Python Abstraction Example:

Now that we know about abstract classes and methods, let’s take a look at an

example which explains Abstraction in Python.

Code:

from abc import ABC, abstractmethod

class Absclass(ABC):

 def print(self,x):

 print("Passed value: ", x)

 @abstractmethod

 def task(self):

 print("We are inside Absclass task")

class test_class(Absclass):

 def task(self):

 print("We are inside test_class task")

class example_class(Absclass):

 def task(self):

 print("We are inside example_class task")

#object of test_class created

test_obj = test_class()

test_obj.task()

test_obj.print(100)

#object of example_class created

example_obj = example_class()

example_obj.task()

example_obj.print(200)

print("test_obj is instance of Absclass? ", isinstance(test_obj, Absclass))

print("example_obj is instance of Absclass? ", isinstance(example_obj, Absclass))

Output:

We are inside test_class task

Passed value : 100

We are inside example_class task

Passed value : 200

test_obj is instance of Absclass? True

example_obj is instance of Absclass? True

Exaplantion:

 Here, Absclass is the abstract class that inherits from the ABC class from the

abc module.

 It contains an abstract method task() and a normal print() method which are

visible by the user.

 Two other classes inheriting from this abstract class are test_class and

example_class.

 Both of them have their own task() method (extension of the abstract

method).

 After the user creates objects from both the test_class and example_class

classes and invoke the task() method for both of them, the hidden definitions

for task() methods inside both the classes come into play.

 These definitions are hidden from the user. The abstract method task() from

the abstract class Absclass is actually never invoked.

 But when the print() method is called for both the test_obj and example_obj,

the Absclass’s print() method is invoked since it is not an abstract method.

Note: We cannot create instances of an abstract class. It raises an Error.

Example:

Q. Accessing abstract class in multiple concrete classes and implementing its

methods.?

from abc import ABC,abstractmethod

class A(ABC):

 def __init__(self,value):

 self.value = value

 @abstractmethod

 def add(self):

 pass

 @abstractmethod

 def sub(self):

 pass

 # normal method

 def mul(self):

 print("The Multiplication is :",self.value * 10)

class B(A):

 def add(self):

 print("The Addition is :",self.value + 10)

class C(B):

 def sub(self):

 print("The Subtraction is :",self.value - 10)

class D(A):

 def add(self):

 print('The Addition is:', self.value + 20)

 def sub(self):

 print('The Subtraction is:', self.value - 20)

#b = B()

cobj = C(100)

cobj.add()

cobj.sub()

cobj.mul()

d = D(200)

d.add()

d.sub()

d.mul()

Output:

The Addition is : 110

The Subtraction is : 90

The Multiplication is : 1000

The Addition is: 220

The Subtraction is: 180

The Multiplication is : 2000

Example:

Q. Create abstract class constructor and access it in child classes

from abc import ABC,abstractmethod

class Cal(ABC):

 def __init__(self,value):

 self.value = value

 @abstractmethod

 def add(self):

 pass

 @abstractmethod

 def sub(self):

 pass

class C(Cal):

 def add(self):

 print(self.value + 10)

 def sub(self):

 print(self.value - 10)

cobj = Cal()

cobj = C(100)

cobj.add()

cobj.sub()

Output:

110

90

Example:

import abc

class Shape(metaclass=abc.ABCMeta):

 @abc.abstractmethod

 def area(self):

 pass

class Rectangle(Shape):

 def __init__(self, x,y):

 self.l = x

 self.b=y

 def area(self):

 return self.l * self.b

r = Rectangle(10,20)

print ('area: ',r.area())

Output:

area: 200

