[image:]
[image:]
[image:]
[image:]

[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
6) open pom.xml file, then add the below
 dependency under <dependencies> tag.
 <dependency>
 	<groupId>org.springframework</groupId>
 	<artifactId>spring-context</artifactId>
 	<version>5.3.37</version>
 </dependency>
[image:]
[image:]
[image:]
[image:]
[image:]
6) open pom.xml file, then add the below
 dependency under <dependencies> tag.
 <dependency>
 	<groupId>org.springframework</groupId>
 	<artifactId>spring-context</artifactId>
 	<version>5.3.37</version>
 </dependency>
[image:]
[image:]
6) open pom.xml file, then add the below
 dependency under <dependencies> tag.
 <dependency>
 	<groupId>org.springframework</groupId>
 	<artifactId>spring-context</artifactId>
 	<version>5.3.37</version>
 </dependency>
[image:]
[image:]
[image:]
[image:]
[image:]
Working with properties file:
· When we create a spring boot application, at src/main/resources folder, application.properties file is created.
· spring boot will by default load the configuration properties from application.properties file into spring environment.
· a property can be injected to a bean property with @Value annotation.
for example:
application.properties:

app.greeting=Welcome to Spring Boot

GreetingComponent.java

@Component
public class GreetingComponent {
 @Value(“${app.greeting}”)
 private String greetingMessage;

 public String greet() {
 return greetingMessage;
 }
}

· if the place holder in @Value annotation doesn’t match with a key in properties file then IllegalArgumentException will be thrown.
· So, we can specify the default value with a place holder in @Value annotation like below.
@Value(“${app.greeting:Welcome}”)
private String greetingMessage;

· if the file application.properties is renamed to some other name like myapp.properties then we must add @PropertySource annotation at main class.
ex:
 @SpringBootApplication
 @PropertySource(“{classpath:myapp.properties}”)
 public class DemoApplication {
 public static void main(String[] args) {
 SpringApplication.run(DemoApplication.class, args);
 }
 }
· if multiple properties files are created, say myapp.properties and myapp2.properties then the files can be loaded with @PropertySources annotation.
ex:
@SpringBootApplication
@PropertySources({
 @PropertySource(“{classpath:myapp.properties}”),
 @PropertySource(“{classpath:myapp2.properties}”)
 }
)
public class DemoApplication {
 public static void main(String[] args) {
 SpringApplication.run(DemoApplication.class, args);
 }
}

· If a matching key found in the two properties files then the value from second file will override the value from the first file.

command line arguments in spring boot:
1. option arguments
2. non-option arguments
· command line arguments are used to provide environment specific settings to the application from the execution line.
· option arguments are prefixed with a dash or double dash.
· option arguments are key=value pairs.
· non-option arguments are positional arguments and they do not start with a dash or double dash.
· non-option arguments are main inputs to the application and they do not have a key.
ex:
>java -jar target/demo.jar –config=config.yml output.log
 (option argument) (non-option arg)
· Basically option arguments are used to modify the behaviour of an application or to provide some additional parameters to an application.
· non-option arguments are used to provide the primary data to the application.
· option arguments can be accessed easily with the key associated with a value.
· non-option arguments can be accessed based on their position.
Accessing command line arguments:
· CommandLineRunner interface provides run() method with String… args parameter. This parameter is to access command line arguments.
· The parameter which contains the raw command-line arguments as a simple string array.
· It's suitable for simple scenarios where you need to work with raw command-line arguments directly.
@Component
public class MyCommandLineRunner implements CommandLineRunner {
@Override
public void run(String... args) throws Exception {
 System.out.println("CommandLineRunner - Arguments: ");
 for (String arg : args) {
 System.out.println(arg);
 }
 // Additional initialization logic
 }
 }
ApplicationRunner interface:
· Both CommandLineRunner and ApplicationRunner are interfaces in Spring Boot that are used to execute code after the application context is loaded and before the Spring Boot application starts.
· They are quite similar but have a difference in how they handle the command-line arguments.
· ApplicationRunner takes an ApplicationArguments parameter, which provides additional functionality over String... args. It allows you to retrieve both the raw arguments and the parsed options (i.e., non-option arguments and option arguments with values).
@Component
public class MyApplicationRunner implements ApplicationRunner {
 @Override
 public void run(ApplicationArguments args) throws Exception
 {
 System.out.println("ApplicationRunner - Arguments: ");
 for (String arg : args.getNonOptionArgs()) {
 System.out.println("Non-Option Arg: " + arg);
 }
 for (String option : args.getOptionNames()) {
 System.out.println("Option Arg: " + option + " with values: " + args.getOptionValues(option));
 }
 // Additional initialization logic
 }
 }
· CommandLineRunner is best for simple scenarios with straightforward command-line arguments.
· ApplicationRunner is ideal for more complex scenarios where you need to handle and parse command-line options and arguments in a more structured way.

		|| Date: 22-Aug-24 ||
 Spring Boot JDBC

· 3 things to consider are,
1. data
2. medium
3. storage

 raw data--- I/O streams --- File
 (data) (medium) (storage)

 Java object - serialization - File
 (data) (medium) (storage)

 raw data -- JDBC --- Database
 (data) (medium) (storage)

 Java object -- JDBC/ORM ---- Database
 (data) (medium) (storage)

JDBC Vs Spring JDBC:
1. In JDBC, we have to write the boiler-plate code like loading driver, creating connection, creating statement, closing connection. But In Spring JDBC, spring will do this.
2. In JDBC, we must do exception handling. But in Spring JDBC, it is optional.
3. In JDBC, there is a chance of memory leak. But in Spring JDBC, no chance of memory leak.
 || DATE: 23-Aug-24 ||
JdbcTemplate class:
· This is the main class in Spring JDBC API.
· A spring bean, can perform CRUD operations on database, by using JdbcTemplate class.
· JdbcTemplate class depends on DataSource object,
to obtain a database connection.
· To obtain a databae connection, a java application has two options.
1. DriverManager class
2. DataSource object
· DataSource is an interface, it has multiple implentations, and the spring framework provided implementation is, DriverManagerDataSource class.
· Suppose, if we are creating a spring jdbc application, then the below changes are required.
· 1. add spring-jdbc dependency
· 2. add spring-context dependency
· 3. add jdbc driver dependency
· 4. configure/register DataSource object into the container
· 5. register JdbcTemplate object into the container.
· suppose, if we are creating a spring boot jdbc application, then the above configurations are not required.
· we need to add spring-boot-starter-jdbc dependency and jdbc driver dependency in pom.xml file.
· In application.properties file, we need to configure data source properties.
· Some methods of JdbcTemplate class, to perform a SQL operations are,
1. update(sql): performs insert/update/delete operation with the given static sql.
2. update(sql, args): performs insert/update/delete operation with the given dynamic sql, binding the args with the sql.
3. queryForMap(sql): performs select operation to select a single row, with the given static sql.
4. queryForMap(sql, args): performs select operation to select a single row, with the given dynamic sql, binding the args with the sql.
5. queryForList(sql): performs select operation to select mulitple rows, with the given static sql.
6. queryForList(sql, args): performs select operation to select multiple rows, with the given dynamic sql, binding the args with the sql.

· while selecting a single record with queryForMap() method, the selected record will be mapped to a Map object. So queryForMap() method returns a Map object.
· while selecting multiple records with queryForList() method, each record will be mapped to a Map object and the map objects are stored into a List. So queryForList() method returns a List object.
for ex:

Map<String,Object> map = jdbcTemplate.queryForMap(“SELECT * FROM EMP WHERE EMPNO=7101”);

List<Map<String,Object>> lst = jdbcTemplate.queryForList(“SELECT * FROM EMP”);
===
 || DATE: 24-Aug-24 ||
[image:]
Application.java
@SpringBootApplication
public class Application {

	public static void main(String[] args) {
		SpringApplication.run(Application.class, args);
	}

}

IEmployeeDAO.java

package com.ashokit.demo.dao;
public interface IEmployeeDAO {
	
	void createRow(int empno, String ename, double salary);
	void updateRow(int empno, double salary);
	void fetchByEmpno(int empno);
	void fetchAll();
}
EmployeeDAOImpl.java

@Repository
public class EmployeeDAOImpl implements IEmployeeDAO {
	
	@Autowired
	JdbcTemplate jdbcTemplate;

	@Override
	public void createRow(int empno, String ename, double salary) {
		jdbcTemplate.update("INSERT INTO EMP VALUES(?, ?, ?)", empno, ename, salary);
		System.out.println("Row inserted.....");
	}

	@Override
	public void updateRow(int empno, double salary) {
		jdbcTemplate.update("UPDATE EMP SET SAL = ? WHERE EMPNO = ? ", salary, empno);
		System.out.println("Row updated......");
	}

	@Override
	public void fetchByEmpno(int empno) {
		Map<String, Object> empMap = jdbcTemplate.queryForMap("SELECT * FROM EMP WHERE EMPNO = ?", empno);
		Set<Entry<String, Object>> entries = empMap.entrySet();
		entries.forEach(entry -> System.out.println(entry.getKey() + " - " + entry.getValue()));
	}

	@Override
	public void fetchAll() {
		
		List<Map<String, Object>> empList = jdbcTemplate.queryForList("SELECT * FROM EMP");
		for (Map<String, Object> empMap : empList) {
			Set<Entry<String, Object>> entries = empMap.entrySet();
			entries.forEach(entry -> System.out.println(entry.getKey() + " - " + entry.getValue()));
		}

	}

}

MyApplicationRunner.java
@Component
public class MyApplicationRunner implements ApplicationRunner {
	@Autowired
	IEmployeeDAO empDao;

	@Override
	public void run(ApplicationArguments args) throws Exception {
		
		empDao.createRow(7655, "JOHN", 5000.0);
		
		System.out.println("====================================");
		
		empDao.updateRow(7788, 9000.0);
		
		System.out.println("====================================");
		
		empDao.fetchByEmpno(7201);
		
		System.out.println("====================================");
		
		empDao.fetchAll();
		
	}

}

application.properties

spring.application.name=4-Application

trun off the banner
spring.main.banner-mode=off

data source properties
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/test
spring.datasource.username=root
spring.datasource.password=root

[bookmark: _GoBack]

image6.png
Dependency Injection(DI) & Dependency Lookup(DL):

* In dependency injection, the dependencies are provided into an object
by the spring container. The dependent object does not need to know
how to obtain its dependencies.

ex:
public class EmployeeController {
EmployeeService employeeService

public EmployeeController(EmployeeService employeeService)
{
this.employeeService = employeeService;
3
3

* Here, EmployeeController(dependent object) is not creating
EmployeeService object.(dependency object).

* The dependency object is provided/injected through the constructor into
the dependent object.

* In dependency lookup, the dependent object looks up for the dependency object
in a registry or in another class.

ex:
E“bliC class Client public class Service {
//variables
Service service; //methods
public Client() { 3
service = Locator.getService();

i public class Locator {

i public static Service getService()
{

return new Service();

3

image7.png
Note: In Spring framework, we have dependency injection.
The spring container injects the required dependencies.

Types of dependency injection:

1. constructor injection
2. setter injection
3. interface injection

* The two mostly used dependency injection types are,
constructor injection and the setter injection.
* In constructor injection, the dependencies are injected through
the constructor.
* In setter injection, the dependencies are injected through
the setter methods.

exl:
class A {
B b; Here, A is dependent object and B is dependency object.
The dependency object is injected through the constructor.
A(B b) { This is called constructor injection.
this.b = b;
3
3
ex2:
class A {
B bref; Here, A is dependent objet, B is dependency object.

The dependency object is injected through setter method.

public void setBref(B bref) { This is called setter injection.
this.bref = bref;
i

image8.png
Spring core annotations:

* annotations in Java is one of the way to represent

meta data.
* The other ways of representing meta data could be like

xml file or comments.
@Value :

public class NetworkManager {
private int networkPort;
private NetworkAdapter networkAdapter;

¥

* In the above, we can say that NetworkManager is a spring bean and
it has two dependencies.

* The networkPort is a value type dependency and networkAdapter
is an object type dependency.

* @Value injects a value.

public class NetworkManager {
@value("8080")
private int networkPort;

private NetworkAdapter networkAdapter;

* Here, networkPort is injected with a value 8080.

* But, in future, if networkPort is changed then you
also need to modify the class.

* The solution is, we can define a properties file, where
it maintains the data as key=value pairs.

* Here, the key can be any valid identifier.

application.properties

public class NetworkManager {

@value("${network.port}") _
private int networkPort; network. port=8086

private NetworkAdapter networkAdapter;

@Component :

* It is a class level annotation.

* when this annotation is added at class level, the spring
will recognize that class as a spring bean during its
components auto scan and registers that component with the
container.

@Component

public class CustomerOperations {
//variables
//methods

@Component

@Controller @RestController |@Service @Repository

image9.png
* The above 5 annotations are called stereotype annotations in spring.
* stereotype is a type which tells the role of a class in the application.

@Controller:
* A specialized version of @Component.

* It is used to specify that a class is a presentation layer
component.

@Controller

public class EmployeeController {
//methods

3

@RestController:

* A specialized version @Component.
* It is used to specify that a class is an api layer component.
* api layer components are also called RESTful webservice classes.

@RestController = @Controller + @ResponseBody

@RestController

public class CustomerApi {
//methods

i

@sService:
* It is a specialized version of @Component.
* It is used to denote that a class is a service layer class.

* It means that it is used to annotate the classes that
holds business logic.

@Service

public class EmployeeService {
//methods

3

@Repository:
* It is a specialized version of @Component.
* It is used to denote that a class is a DAO layer class.
* It means that the annotated class handles the data access
operations.(database related operations).

@Repository

public class EmployeeDAD {
//methods

3

image10.png
@Autowired :

* It is used for injecting object type dependencies of
a spring component.
* It performs automatic dependency injection by type.
* It is applied to fields, setter methods and constructors.

@Controller @Service
public class EmployeeController { public class EmployeeService {
//methods
@Autowired 3

EmployeeService empService;

spring container

employeeController employeeServic

Employee
Controller

Employee
Service

bean bean

* When a spring component is registed as a bean in the container, it
will be registered with a name.

* By default, the class name with the first letter in lower case will
be used as a name.

* @Autowired will search for a bean in the container whose type/class
matches with the dependency type.

* @Autowired has one element called required and its default value is true.
* If no matching bean is found in the container for dependency injection
then an exception will be thrown. (NoSuchBeanDefinitionException).

* If you want to specify that injecting a dependency is optional, then
add required=false element.

@Autowired(required = false)
EmployeeService empService;

image11.png
what if multiple matching beans found for dependency injection?

@Controller @Service

public class ReportController { public class ExcelDataService implements
DataService {
@Autowired //methods

DataService dataService; 3

@Service

public class TextDataService implements
DataService {

//methods

Spring container (ApplicationContext)

reportController excelDataService textDataService

Report Excel Text

Controller DataService DataService
bean bean bean

* Here, spring found two matching candidates for dependency injection in the
spring container.

* That's why spring will get ambiguity and throws
NoUniqueBeanDefinitionException.

* This problem can be resolved with @Qualifier annotation.
@Qualifier :

The purpose of this annotation is to specify the name of the
qualifying bean for dependency injection.

@Controller
public class ReportController {

@Autowired
@Qualifier("excelDataService")
DataService dataService;

@Primary:

* This is to denote that a bean is primary to inject the
dependency when multiple candidates are found

image12.png
@Controller @Service

public class ReportController { public class ExcelDataService implements
DataService {
@Autowired //methods

DataService dataService; 3

@Service

@Primary

public class TextDataService implements
DataService {

//methods

@Controller

public class ReportController {
@Autowired
DataService dataServicel;

@Autowired
@Qualifier("excelDataService")
DataService dataService2;

*

In the above example, @Primary denotes the TextDataService bean is the
primary bean for dependency injection.

But, ReportController component has two dependencies of same type and
it requires both types of DataService components.

So, we have also used @Qualifier to override the primary definition.

*

*

@Configuration:
* There are 3 ways of doing configuration.
1. xml
2. annotations
3. Java configuration class
* @Configuration is to specify that a class is a Java config class.
* A configuration class is used to define bean methods.

* Bean methods are the methods which registers a bean in the container

@Bean annotation at method level, registers a bean in the container.

@Configuration
public class AppConfig {

@Bean

public RestTemplate restTemplate() {
return new RestTemplate();

}

@Component
public class A { @Component
@Autowired public class B {
B bref;
3
@Autowired
RestTemplate rt;
3
@CompnentScan

* This annotation enables component scan feature of spring.

* It is to specify the base package(s) for scanning the component
classes, which are to be registered as beans in the container.

@Configuration

@ComponentScan(basePackages = { "com.ashokit" })
public class AppConfig {

3

image13.png
Installing STS :

*

*
*
*
*
*
*

*

STS -- Spring Tool Suite
STS = Eclipse + Spring features
visit spring.io
under projects menu --> choose Spring Tools 4
download Spring Tools 4 for Eclipse
an executable jar file is downloaded.
open a command prompt, execute the below command
to extract the executable jar file.
java -jar spring-tool-suite-4-4.24.0.XXXXXXXXXXXXXXXX.Jar
sts-4.24.0 folder is created.
Now we can start the STS ide by starting SpringToolSuite4 application.

First spring application in STS:
1) launch STS
2) File --> New --> Maven Project --> next -->
a list of maven archetypes are displayed.
3) In Filter box : enter maven-archetype-quickstart then select

the archetype with group id org.apache.maven.archetypes

4) Next
5) enter

groupId : com.ashokit
artifactId: 1-Demo-Application
package : com.ashokit.beans

E

sh

image14.png
7) create a package com.ashokit.bean under src/main/java and create
a new class HelloWorldBean, like below.

@Component

public class HelloWorldBean {

public void sayHello() {
System.out.println("Welcome to Spring!");

i

8) create another package com.ashokit.config under src/main/java and
create a new class AppConfig like below.

@Configuration

@ComponentScan(basePackages = { "com.ashokit" })

public class AppConfig {

¥

9) create another package com.ashokit.main under src/main/java and
create a new class Client, like below.
public class Client {

public static void main(String[] args) {

ApplicationContext context = new AnnotationConfigApplicationContext(AppConfig.class);

HelloWorldBean helloWorld = context.getBean(HelloWorldBean.class);
helloWorld.sayHello();

i

i

Second spring application with autowiring
Movielister.java

@Component

public class MovieLister {

@Autowired
MovieFinder mFinder;

public void listMovies() {

System.out.println(mFinder.getMovies());

3
3

MovieFinder.java
@Component
public class MovieFinder {

public Map<String, Integer> getMovies() {
Map<String, Integer> moviesMap = new HashMap<>();
moviesMap.put("RRR", 2022);
moviesMap.put("Kalki", 2024);
moviesMap.put("Tenant", 2024);

return moviesMap;

¥

i

AppConfig.java

@Configuration

@ComponentScan(basePackages = "com.ashokit")
public class AppConfig {

@Bean

@Primary

public MovieFinder finder() {
MovieFinder finder = new MovieFinder();
return finder;

i

i

Client.java

public class Client {

public static void main(String[] args) {
ApplicationContext context = new AnnotationConfigApplicationContext(AppConfig.class);
MovielLister lister = context.getBean(MovielLister.class);
lister.listMovies();

3
3

image15.png
* The important tags in pom.xml file of a spring boot project.
1. <parent> tag
2. <dependency> tag
3. <plugin> tag

* <parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.3.2</version>
<relativePath/>
</parent>
* spring-boot-starter-parent is a special starter and it provides the default
configurations for our Spring Boot application.
* The spring-boot-starter-parent will do dependency management. It means, you
don't have to specify manually the version for each spring boot dependency.
It ensures that the versions of dependencies are compatible with spring boot version.
This spring-boot-starter-parent will pre-configures the plugins like compiler plugin,
surefire plugin, jar plugin, deploy plugin, etc.. This reduces the amount of
configuration needed in the pom.xml file

*

*

The spring-boot-starter-parent will set the default Java version for the project.
The spirng-boot-starter-parent ensures that all the transitive dependencies works
together without any conflicts.

*

image16.png
* <relativePath> is used to specify the relative path of the parent pom.xml.
* we use this tag, when a child module needs to reference its parent module.
* <relativePath/> empty tag, refers ignoring local parent.

* Maven will ignore local parent pom and fetches it from a repository.

Note: Each spring boot project that we create will be a child module of
the parent module, given by spring boot.

* <dependency> tag under <dependencies> is used to specify the spring boot starter
dependencies needed to this application.

* <plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
* This the spring boot's plugin for Maven.
* Maven uses thig plugin to create executable JARs or WARs,
to repackaging the built JAR to include the dependencies, to run
spring boot applications.

image17.png
@SpringBootApplication:
* This annotation is a core annotation in spring boot and it configures
multiple features to our spring boot application.
* A class annotated with @SpringBootApplication and with main method represents
an entry point to start the spring boot application.

@SpringBootApplication = @Configuration
+
@EnableAutoConfiguration
+
@ComponentScan

* @Configuration marks that a class is a Java configuration to define the spring beans

* @EnableAutoConfiguration tells the spring boot that, based on the dependencies
added to the pom.xml(available on classpath), configure the required beans
automatically.

* @ComponentScan tells spring boot to scan the current package and its sub-packages
for spring components and register them as spring beans into the spring container.

image18.png
How does the main class looks like in spring boot?
@SpringBootApplication
public class DemoApplication {

public static void main(String[] args) {
SpringApplication.run(DemoApplication.class, args);
3

}

* SpringApplication is a spring boot class and run() is a static method.
* The statement, SpringApplication.run(DemoApplication.class, args) will do
the following.
1. starts ApplicationContext container
2. converts the command line args into spring application properties.
3. executes the Runner components of the application to do
initial setup for the application.

* After the above three steps, the spring boot application is ready to serve the
users.

image19.png
Runner components:

* The runner components in spring boot application are used to execute any piece
of code for only once when application starts.

* We can create two types of runner components in spring boot.
1. CommandLineRunner component
2. ApplicationRunner component

* CommandLineRunner and ApplicationRunner are the functional interfaces in
spring boot. Which means, they have a single abstract method called run().

* For example, a CommandLineRunner component can be created like below.
@Component
public class MyRunner implements CommandLineRunner {

@0verride

public void run(String... args) {

//logic

3

3

* some of the uses cases of creating runner components are,
-> loading initial data to the database
-> fetching the job schedules from the database
-> cleaning up some resources
-> connecting to the message queues.

image20.png
First spring boot application:

1. launch STS.
2. File -> Spring Starter Project
Name: demo
Type: Maven packaging: Jar
Java Version: 17 language: Java
Group: com.ashokit
Artifact: demo
Version: 0.0.1-SNAPSHOT
Description: Demo application for spring boot
package: com.ashokit.demo
Next
3. Next
4. Finish
(Note: when we don't select any starter dependency then
by default spring-boot-starter dependency will be added
to the pom.xml file)
5. src/main/java, right click on it -> New -> package
Name: com.ashokit.demo.runner
6. right click on the runner package created, create a new class MyRunner like below.

@Component
public class MyRunner implements CommandLineRunner {
@0verride
public void run(String... args) throws Exception {
System.out.println("Welcome to Spring Boot's Command Line Runner....");
3
3
* We can run the spring boot application, in two ways.
1. From IDE

2. From Command Line.
* If you want to run the application from IDE, then it is optional

to create a executable jar for the application.
* You can right click on the project, then you can run as Java application.
* To run the application from the command line, then you have to do

maven build, so that an executable jar file is created.
7. right click on the project --> Run As --> Maven build... -->

Goals: package
run

8. After Build Success, refresh the project.
We can find the executable jar file under target folder

9. Now open a command prompt, switch to the project location.
10. Now, run the below command.
java -jar target/demo-0.8.1-SNAPSHOT.jar

image21.png
creating multiple runner components:

* when we create multiple runner components, to execute them in a
specific order, we can use @0rder annotation.

* without @Order annotation also, the multiple runner components can
execute. But we can't predict the order. So, we can @0rder annotation.

@Component
@order(1)
public class MyRunner implements CommandLineRunner {

@0verride
public void run(String... args) throws Exception {

System.out.println("Welcome to Spring Boot's Command Line Runner....

@Component
@0rder(2)
public class MyRunner2 implements CommandLineRunner {

@0verride
public void run(String... args) throws Exception {

System.out.println("Spring Boot version 3.x");

"

image22.png
4-Application

—=

src/main/java
camAashokitAdemo}

—> Application.java
com. ashoKit .demo.dao

t—> IEmployeeDAO. java
—> EmployeeDAOImpl.java

> com.ashokit.demo.runner|
MyApplicationRunner.java
— [src/main/resources

I—> application.properties
—= pom.xml

image1.png
Spring Boot with Microservices

Trainer: Shekher

(Working professional)
Duration: 4 Months
Time : 8PM - 9:30PM

Fee: 8k (Live classes)

10k (Live classes + videos(1 year))

mode: online classes

1) Overview of Spring framework

2) Spring Container

3) Spring annotations

4) Bean life cycle

5) Overview of Spring Boot

6) Spring Core with Spring Boot

7) Spring JDBC with Spring Boot

8) Spring Data JPA with Spring Boot
9) Spring MVC with Spring Boot

10) Spring Security with Spring Boot|
11) REST API with Spring Boot

12) Redis cache with Spring Boot
13) Spring Boot Actuators

14) Kafka with Spring Boot

1) Overview of Microservices
2) Spring Cloud

3) Centralized configuration - config server

4) Load balancing

5) Service discovery - Eureka server
6) Gateway server

7) Resilience

8) Sleuth & Zipkin

9) Prometheus & Grafana

10) Docker

11) Kubernetes with microservices
12) Deployment on AWS

13) Event handling in Microservices

15) New Features in Spring Boot 3.x

image2.png
Application layers:

Presentation Service Data Access
layer layer layer Database
Servlet — —
& ETB JDBC —
JsP
<
- S—
Database
= >
JDBC
STRUTS EJB =
Framework
—_—
-— S—

image3.png
STRUTS EJB Hibernate
Framework Framework
STRUTS Spring Hibernate
Framework Framework Framework
Spring Spring Spring
Framework Framework Framework
(mve) (Spring Core, (Data JPA)

Spring AOP)

Database

Database

JE—

Database

J—
—

image4.png
Nowadays :

Data Access

Presentation api
layer layer
: Spring
Angular/ £ K
React IS ramewor
(REST API)

-

service
layer layer
Spring > Spring
Framework Framework
(Data JPA)

(spring core,
spring AOP)

le—

Database

image5.png
dependency object & dependent object :

class ClassA { class ClassB {
ClassB classB; //variables
//methods
ClassA() { 3
classB = new ClassB();
3
3

dependency object: an object, the another object depends on.
dependent object: an object, who depends on the other object

* Here, ClassA object is dependent object and ClassB object is dependency object.

public class EmployeeController {
EmployeeService employeeService;

public EmployeeController() {
employeeService = new EmployeeService();

dependent object: EmployeeController class object
dependency object: EmployeeService class object

public class EmployeeService {
//variables
//methods

