	Spring cache annotations:
 =============================
· The spring cache annotations provides an easy way to manage caching in applications.
· Spring has provided annotations and different cache providers provided implementations.
· The cache improves an application’s performance by reducing the number of interactions with the database.
@Cacheable:
 @Cacheable(value = “users”)
 public User getUserById(int id) {
 //logic
 }
· This @Cacheable is used to mark that a method’s return value as cacheable.
· When the method is called, spring checks whether the result already in the cache or not.
· if not, then spring executes the method, caches the result and then returns it.
· if already exist, then spring returns the result by taking from cache, without executing the method.
@CachePut:
· The spring always executes the method, then updates the cache with the result, irrespective of whether the data already exist in the cache or not.
· This annotation is used to update the cache directly.

@CachePut(value = “users”, key = “#user.id”)
public User updateUser(User user) {
 //logic
}

 @CacheEvict:
· The spring always executes the method, then removes the entry from the cache.

@CacheEvict(value=”users”, key =”#id”)
public void deleteUser(int id) {
 //logic
}
 @EnableCaching:
 This annotation we write at main application class, to enable caching support.
 @SpringBootApplication
 @EnableCaching
 public class DemoApplication {
 p s v m(String[] args) {
 SpringApplication.run(DemoApplication.class, args);
 }
 }
https://github.com/ShekherJava/SB-REST-Cache.git
Spring Boot profiles:
· Spring Profiles is a powerful feature in the Spring Framework that allows you to define and manage different configurations for different environments (e.g., development, testing, production).
· Profiles let you specify which beans to load or which properties to use based on the current environment, making it easier to adjust application behavior without manually changing configuration files.
· With Spring, you can create separate configuration files for each profile by naming them with a suffix that matches the profile. For example:
application-dev.properties (or .yml for YAML)
application-prod.properties
· Each file will contain properties specific to that environment. Spring automatically loads the file matching the active profile, which overrides the default properties.
· You can specify the active profile in your application.properties file, with the below property.
 spring.profiles.active=dev
· You can define multiple profiles in a single application.yml file also.
· You have to use profile-specific sections with the
--- separator.
· Each profile section should start with spring.config.activate.on-profile, to specify the profile it belongs to.
example applicatin.yml file:
spring:
 application:
 name: SB-Profiles
 profiles:
 active: test

spring:
 config:
 activate:
 on-profile: "dev"

profile:
 id: 1
 name: Dev Profile

spring:
 config:
 activate:
 on-profile: "test"
profile:
 id: 2
 name: Test Profile

spring:
 config:
 activate:
 on-profile: "prod"
profile:
 id: 3
 name: Prod Profile

https://github.com/ShekherJava/SB-Profiles.git
[bookmark: _GoBack]

Spring Boot Actuator:

· Spring Boot Actuator is a module which provides pre-defined REST endpoints, for monitoring and inspecting the various aspects of the spring boot application.
· It means, like we can get the health checks, metrics, configurations, runtime details of the currently executing application.
· To enable Actuator support in Spring Boot, we need to add spring-boot-starter-actuator dependeny in pom.xml and we need to enable all the actuator endpoints by adding the below property to the properties fie.
 management.endpoints.web.exposure.include=*
· The root endpoint for all the actuator endpoints is /actuator
· Except /actuator/shutdown, the remaining actuator REST endpoints are accessible through HTTP GET. But shutdown endpoint is accessible through HTTP POST.

/actuator/health : provides application’s health status.
 It is used to determine, whether an
 application is healthy to handle the requests.
 . By default, it provides the status as UP or DOWN.
 . To get the health status with components like database connectivity, disk space and connection to external services, then we need to add the below property in the application.properties file.
 management.endpoint.health.show-details=always

/actuator/metrics : provides the application metrics like JVM metrics, HTTP request metrics, connection pooling metrics, etc.
. This endpoint displays the unique names of the metrics and we can get the details of each metric with metrics/{metric-name}

/actuator/beans : Provides all the beans in the Spring Application Context including their dependencies.

/actuator/mappings: provides all the request mappings in the application. It includes details like, endpoint paths, request methods, handler methods, etc.

/actuator/shutdown: Allows to shutdown the application.
 It is disabled by default, so to enable, add
 the below property in application.properties.
 management.endpoint.shutdown.enabled=true
(This endpoint can’t be tested from browser. User POSTMAN, and send request with HTTP POST).

