	Model-View-Controller design pattern

· design pattern? It is proven solution for a recursive problem.
· design pattern is not an API/technology/Framework. It is just a set of principles to solve a recursive problem.
· design patterns are divided 4 categories.
1. creational design patterns
2. structural design patterns
3. behavioral design patterns
4. Java EE patterns.
· The MVC is a design pattern for building the user interfaces.
· The MVC pattern segregates an application into interconnected components, Model, View and Controller, to achieve modularity and to make the application more flexible and scalable.
Model: represents the data and the business logic of the application.
· The classes in a project, which are holding the data or enforces the business rules or interacting with the database, are Model classes.
· For example, in a Banking system, the classes we create like Account or Transaction or BankService, etc.. are the Model classes.
View:
· The View is responsible for displaying the information for the user.
· The View represents the presentation layer of the application.
· The View gets the data from the Model and will present it to the user.
· The View could be a web page that shows the data to the user, or it could be a web page that shows a form to accept the user’s input.
· For example, a web page showing the account details is a View, or a web page showing the form for money transfer is a View.
Controller:
· The Controller acts as a mediator between the Model and the View.
· It will process the user input, it will interact with the Model and it will update the View.
· It manages the entire request flow of an application.

For example, The Controller handles the requests for viewing account balance, or making money transfers, etc.

[image:]
Spring MVC flow:
· The components in Spring MVC flow are,
1. DispatcherServlet
2. HandlerMapping
3. Controller
4. ViewResolver
5. View

[image:]

[image:]
· A user sends an HTTP request, by entering the URL in the browser(Client).
· The request first lands at the DispatcherServlet.
· DispatcherServlet is a Front Controller in Spring MVC, and it is C in MVC.
· DispatcherServlet is responsible for directing the request to the right Controller class(this controler is M in MVC), who can handle the request.
· The DispatcherServlet class consults with the HandlerMapping component, to find the right controller class.
· Now the DispatcherServlet forwards the request to that controller class.
· The controller class, may directly contain business logic and interacts with the database to fetch data or it can invoke a service class, then intern repository class, to fetch the data from the database.
· The controller class returns, the view name or the view name and the data to the DispatcherServlet.
· The DispatcherServlet, now consults with the ViewResolver to determine the view(JSP, Thymeleaf, freemarker,etc.).
· The DispatcherServlet, now includes the reponsse of a view. Finally sends that reponse to the client.

How to create a controller class:
· @Controller
· @RequestMapping

@Controller is used at class-level and @RequestMapping can be used at class-level or at method-level.

The controller class created in spring mvc project, is responsible to process the input and return appropriate view name or the data.
· The controller class can have the business logic or it can interact with service classes to handle the request.
· @Controller is a stereo type annotation, it marks the a class as a controller in a spring mvc project.
· @RequestMapping maps a request to a specific controller method based on the URL and the HTTP method.
for example:
@RequestMapping(value=”/hello”, method = RequestMethod.GET) It maps a url /hello with HTTP method GET on to a controller method.

@Controller
public class HelloController {
 @RequestMapping(“/hello”)
 public String sayHello() {
 return “welcome”;
 }
}
[image:]

https://github.com/ShekherJava/SB-WelcomeMVC.git

From spring 4.2, we can also use short cut annotations for @RequestMapping.
@RequestMapping(value = “/hello”, method = RequestMethod.GET) ---> @GetMapping(“/hello”)
@RequestMapping(value = “/hello”, method = RequestMethod.POST) ---> @PostMapping(“/hello”)
@RequestMapping(value = “/hello”, method = RequestMethod.PUT) ---> @PutMapping(“/hello”)

@RequestMapping(value = “/hello”, method = RequestMethod.DELETE) ---> @DeleteMapping(“/hello”)

@RequestMapping(value = “/hello”, method = RequestMethod.PATCH) ---> @PatchMapping(“/hello”)

[image:]
https://github.com/ShekherJava/SB-LoginMVC.git
=======================================
[image:]
https://github.com/ShekherJava/SB-LoginMVC-Database.git

Bean validation api:
· client-side validation
· server-side validation
· client-side validation can be implemented in javascript, it is very useful and faster.
· Relying entirely on client-side validations makes our application vulnerable. Because, users can disable javascript on their browser or the validation logic can be tampered on the client-side.
· For security, data integrity, consistency, an application required both client-side and server-side validations.
· In spring, the server-side validations can be implemented using Bean validation api.
· Bean validation api, is a set of annotations applied on the Java bean properties/methods, to implement the constraints.
@NotNull: The value of a field or a property must not be null.
 public class User {
 @NotNull
 private String firstName;

 @NotNull
 private String lastName;
}

@Size : the field or property should contain the specified minimum and maximum length.
public class User {
 @Size(min=2, max=12)
 private String username;
}

@Min / @Max: The integer field should contain its value >= min value or <= max value.
public class User {
 @Min(18)
 @Max(28)
 private int age;
}

@Email: The value of a field/property should be a valid email address.
public class User {
 @Email
 private String email;
}

@Past: The value of the field/property should be a data in the past.

public class User {
 @Past
 private LocalDate dateOfBirth;
}

@AssertTrue: The value of a boolean field must be true.
public class User {
 @AssertTrue
 private boolean isActive;
}

@DecimalMin/@DecimalMax: The value of a decimal field should be >=min and <=max value.
public class Product {
 @DecimalMin(“0.01”)
 @DecimalMax(“999.99”)
 private double price;
}
@Pattern: The value of the string field, must match with the specified regular expression.
public class User {
 @Pattern(regexp = “^[A-Z][a-z0-9]*”)
 @Size(min=6)
 private String password;
 }
@NotEmpty: The value of a string field should not be empty.
public class User {
 @NotEmpty
 prviate String username;
 @NotEmpty
 private String password;
}
[bookmark: _GoBack]

image4.png
server
client

http://localhost:8080/hello ““___—;;v HM

+elcome to Spring MVC with Boot - —‘% HelloControlle
< L
¢ \\\\\\\S;[igg::J

View|

image5.png
server

client
http://1h:8080/login .
reques ”///;? HM
DS |—> LoginController
e S—
response ¢ ‘\\\\\\~§s VR
login.jsp View
Username :
Password :
¢ server
submit [eques
,;7ZL "”ﬁfs? HM
DS |—— > LoginControllelr
success.jsp T "
View|
Hello, XXXXXX
Login success.

image6.png
server

client
http://1h:8880/1login
request / HM
DS = LoginController
<
response \l/ \ VR
login.jsp View
Username :
Password :
t server
submit reques
7 / HM
DS | ——> LoginControlleré—>
success.jsp T
v " [<1—
lew
Hello, Xxxxxxx
Login success.

image1.png
client Controller

request

response

image2.png
server

/ HandlerMapping

client

request

Dispatcher
Servlet

response

image3.png
server

/ HandlerMapping

client
request
Dispatcher
response <

=
TSN

