
Spring Boot & Microservices Mr. Ashok

Spring Web MVC

=> It is used to develop "web applications + distributed applications" using spring framework.

=> Web apps are used for customer 2 business communication (C 2 B).

Ex : www.ashokit.in, www.gmail.com, facebook, naukri, google...

=> Distributed applications are used for Business To Business communication (B2B).

 MakeMyTrip <--------> IRCTC

 Passport <--------> AADHAR

 gpay <-----> SBI

Advantages with Web MVC

1) Easily we can build web and distributed apps

2) Form Binding techniques (capture form data and store into java object)

3) Supports multiple presentation technologies

 ex: Thymeleaf, JSP....

4) Embedded Container support.

 Ex : tomcat, jetty, netty...

Spring Web MVC Architecture

=> In Spring Web MVC module below components are very important.

 1) DispatcherServlet

 2) Handler Mapper

 3) Controller

 4) ModelAndView

 5) View Resolver

 6) View

Spring Boot & Microservices Mr. Ashok

=> Dispatcher Servlet is a predefined class available in Spring WEB MVC module.

=> Dispatcher Servlet acts as front controller for our application.

=> It is responsible to recieve request and send response to client.

Note: It contains common logics required for all controllers of our application.

=> Handler Mapper is a predefined class which is responsible to identify request handler

method (controller class method).

Note: Based on url-pattern handler mapper will identify controller class method to handle the

request.

 /login ===> login() method

 /register ===> register() method

 /logout ===> logout() method

=> Controller is a java class which is responsible to execute the logic based on given request and

generate response.

=> Controller class will send response to DispatcherServlet in the form of ModelAndView

object.

 Model -> Represents data to display in View page. Model is a Map (key & value).

 View -> view file name (ex: index.html, dashboard.html, home.html)

Spring Boot & Microservices Mr. Ashok

=> ViewResolver is used to identify location of view files.

=> View is responsible to render model data on the view page and prepare final response page.

Developing First Spring WEB MVC Application

Step-1 : Create SpringBoot application with below dependencies

 a) web-starter

 b) thymeleaf-starter

 c) devtools

Step-2 : Create Controller class (@Controller) with required methods and map methods to

URL pattern.

 GET Method ===> @GetMapping

 POST Method ===> @PostMapping

Step-3 : Create view page (html) (location : src/main/resources/templates)

Step-4 : Run the application

Note: change server port in "application.properties" file if required.

Step-5 : Access application url in browser.

Spring Boot & Microservices Mr. Ashok

Spring Boot & Microservices Mr. Ashok

Controller

=> It is responsible to handle the request.

=> We will use @Controller annotation to represent java class as controller class.

=> Inside controller we can write multiple methods to handle the requests.

=> Controller method will return ModelAndView object.

Model : It is used to send data from controller to UI in key-value format.

 model.addAttribute(key, value);

=> We can send data from controller to UI in 3 ways

 1) ModelAndView

 2) Model

 3) @ResponseBody

=> In 3 ways we can send data from UI to controller

 1) Request Param

 2) Path Variable

 3) Request Body

Spring Boot & Microservices Mr. Ashok

What is @ResponseBody annotation ?

=> It is used to represent that our controller method is returning direct response to client

without any view pages.

Note: We can write this @ResponseBody at method level and at class level also.

Note: @Controller + @ResponseBody = @RestController

What is Request Parameter ?

=> Request Parameters also called as Query Parameters.

=> These are used to send data from client to server in URL.

=> Request Parameters will represent data in key-value format.

Ex : www.ashokit.in/courses?name=sbms&trainer=ashok

=> Request Parameters will start with ? and will be seperate by &.

=> To read Request Parameters from the URL we will use @RequestParam annotation.

Spring Boot & Microservices Mr. Ashok

What is Path Variable ?

=> Path Variables also called as URI variables and Path Parameters.

=> These are used to send data from client to server in URL.

 Ex : www.ashokit.in/course/sbms

Note: Path Variables will represent data directley without any key.

Note: Path Variables position we need to represent in URL template.

 Ex : @GetMapping("/greet/{name}")

=> To read path variables from URL we will use @PathVariable annotation.

Spring Boot & Microservices Mr. Ashok

What is Form Binding ?

=> The process of binding Java object to form fields is called as Form Binding.

=> With the help of form binding we can map java object to form fields and form

fields data to java object.

Spring Boot & Microservices Mr. Ashok

Requirement : Develop Spring WEB MVC based application with

below functionalities

Spring Boot & Microservices Mr. Ashok

Spring Boot & Microservices Mr. Ashok

Spring Boot & Microservices Mr. Ashok

Form Validations

-> Validations are used to verify users are entering correct data in the form before submitting.

-> Form validations we can implment in 2 ways

 1) client side validations

 2) server side validations

-> Client side validations will execute at browser level.

 Advantage : we can stop invalid requests at browser only (no need to send to server)

 Dis-Advantage: If javascript disbaled in browser then client side validations will not

work.

Spring Boot & Microservices Mr. Ashok

-> Server side validations will execute at code level.

Requirement : Develop springboot web mvc based application with form validations like

below.

Step-1 : Add validation-starter in pom.xml file

Spring Boot & Microservices Mr. Ashok

Step-2 : Use validations related annotations at form binding class

Step-3 : Validate from data using @valid annotation at controller method

Spring Boot & Microservices Mr. Ashok

Step-4 : Display validation error msg in form.

Spring Boot & Microservices Mr. Ashok

How to configure jetty as default embedded container?

Step-1 : Exclude tomcat from 'web-starter' in pom.xml

Step-2 : Configure jetty starter in pom.xml

Http Session

=> Session is used to store user data in the application.

=> When user logged in then session obj will be created with user data in the session.

=> For every user one session object will be created.

Note: Session is specific to browser.

=> When user logout from the application then we will remove session object from the

application.

Usecase : Session is used in the applications to display data based on logged in user.

Ex : user dashboard, user-personal-details, user-education-details, user-enrolled-courses etc.

Spring Boot & Microservices Mr. Ashok

// Creating session object and storing email after valid login

// getting email from session

 // getting session object

Spring Boot & Microservices Mr. Ashok

// invalidating session in logout

Email sending with Spring Boot

=> To send emails we need SMTP properties

 SMTP = Simple mail transfer protocol

Note: For practice purpose we can use gmail smtp properties.

Note: We need to generate gmail "app password" for SMTP

authentication purpose.

@@ URL To Generate App Pwd :

https://myaccount.google.com/apppasswords

Step-1 : Add "mail-starter" in pom.xml file

Spring Boot & Microservices Mr. Ashok

Step-2 : Configure SMTP properties in "application.properties" file.

Step-3 : Use "JavaMailSender" to send emails.

 javaMailSender.send(Message msg);

Note: We have 2 types of msgs to send email

 a) SimpleMailMessage (plain text)

 b) MimeMessage (html body, attachments)

Spring Boot & Microservices Mr. Ashok

Spring Boot & Microservices Mr. Ashok

Annotations we have used so far

1) @Component

2) @Service

3) @Repository

4) @Configuration

5) @Bean

6) @Scope

7) @DependsOn

8) @Autowired

9) @Primary

10) @Qualifier

Spring Boot & Microservices Mr. Ashok

11) @SpringBootApplication

 - @EnableAutoConfiguration

 - @SpringBootConfiguration

 - @ComponentScan

12) @Entity

13) @Table

14) @Id

15) @Column

16) @GeneratedValue

17) @CreationTimestamp

18) @UpdateTimestamp

19) @Lob

20) @Query

21) @OneToOne

22) @OneToMany

23) @ManyToOne

24) @ManyToMany

25) @JoinColumn

26) @JoinTable

27) @Transactional

Spring Boot & Microservices Mr. Ashok

28) @Modifying

29) @Controller

30) @GetMapping

31) @PostMapping

32) @RequestParam

33) @PathVariable

34) @ResponseBody

35) @Valid

36) @NotNull

37) @NotEmpty

38) @Email

39) @Size

40) @Getter

41) @Setter

42) @NoArgsConstructor

43) @AllArgsConstructor

44) @Data

45) @Slf4J

