 Spring Boot with Microservices

Trainer : Shekher
 (Working Professional)
Timing : 11AM – 1PM
Duration : 3 Months
Mode : offline / online
Fee : 8k (without backup videos)
 10k (with backup videos(1 year validity))
Pre-requisites: Core JAVA
 SQL Basics(CRUD)
 Basics of JDBC
 Basics of Web
Spring Boot contents:

1. Spring Framework basics (Core)
2. Spring Core Annotations
3. Spring Boot Introduction
4. Spring Boot with JDBC
5. Spring Boot with JPA
6. Spring Boot MVC
7. Spring Boot Security
8. Spring Boot REST API
9. Spring Boot REST + JWT security
10. Spring Boot REST + OAUTH2 security
11. Spring Boot Messaging with Kafka
12. Spring Boot Monitoring
13. Spring Boot Batch processing

Microservices contents:

1. Monolithic applications
2. Microservices
3. Microservices with Cloud
4. Centralized Configurations
5. Service Registry with Eureka
6. Spring Cloud Gateway
7. Spring Cloud Load balancing
8. Resilience4J
9. Spring Microservices Security
10. Grafana
11. Prometheus
12. Docker
13. Kubernetes(k8s)
14. Deployment on AWS

 Spring Framework Basics (Core)

what is a Framework?
· A Framework is a pre-built structure that provides a foundation to develop the software applications.
· Every project contains some common functionalities and also business functionalities.
· A Framework will provide the common functionalities and the developers are only required to implement the business functionalities.
· In this way, a Framework will help the developers to build the software application rapidly.
 How a Framework is different from a technology?
· A framework provides a pre-defined structure to develop the applications.
· A technology only provides the tools and methodologies to develop the applications.
· Suppose, if you want to develop a software which requires 100 lines of code then with technologies, you have to write the entire code by yourself.
· If you use a framework, then almost 50% of code will be provided by the framework only. So, you have to write the remaining code for completing the application.
· It means, with frameworks, you can develop the applications easily and fastly.

How frameworks are introduced in Java?
[image:]

[image:]
[image:]
[image:]
[image:]
[image:]

Q) What is IS-A relationship and HAS-A relationship?

A) 1. IS-A relationship is called Inheritance and HAS-A relationship is called Association.
 2. For example, Car extends Vehicle, we read it as
 Car is-a Vehicle.
 3. Association can be Aggregation or Composition.
 4. If we create one class object in another class, then there is HAS-A relationship between the classes.
 5. For example,
 class College {
 Department dept = new Department();
 }
 6. College class has HAS-A relationship with Department class.
 7. Aggregation is a weak relationship between the classes and Composition is a strong relationship between the classes.

Dependent class and Dependency class:
· If you create class B object in Class A, then we say that
class A is the dependent class and class B is the dependency class.

class A { class B {
 B bObj = new B(); //methods
 //other methods }
}

class CustomerService { class CustomerRepository
 CustomerRepository repo = {
 new CustomerRepository(); //methods
 //other methods }
}

· One dependent class can have multiple dependency classes also.

 class A { class B { class C {
 B bObj = new B(); //methods //methods
 C cObj = new C(); } }
 //other methods
 }

tightly coupled objects:

· If a dependent object wants to change its dependency object, if the code changes are required in the dependent object/class then we can say that dependent object is tightly coupled with the dependency object.

class Travel { class Car { class Bike {
 Car car = new Car(); //methods //methods
 } }
 //methods
}
· In the above, Travel class/object is dependent object and Car class/object is dependency object.
· Suppose, Travel object wants to change the dependency object from Car object to Bike object.
· For this, in Travel class, remove the Car object and create Bike object. It means, some code changes are required.
· So, we say that Travel object is tightly coupled with the Car object.

class Travel { class Car { class Bike {
 Car car = new Car(); //methods //methods
 Bike bike =new Bike(); } }
 //methods
}

loosely coupled objects:

· If a dependent object wants to change its dependency object, if no code changes are required in the dependent object/class then we can say that dependent object is loosely coupled with the dependency object.
· To provide loose coupling, follow the below rules.
1. create the dependency classes by implementing an interface.
2. create interface reference variable in the dependent class.
3. define a setter method for setting/injecting the dependency object.
ex:
 interface Vehicle {
 //abstract methods
 }
 class Car implements Vehicle {
 //methods
 }
 class Bike implements Vehicle {
 //methods
 }

 class Travel {
 Vehicle vehicle;

 public void setVehicle(Vehicle vehicle)
 {
 this.vehicle = vehicle;
 }
 //other methods
 }
· In the above example, we can set the Car object or Bike object to the Travel object, by calling the setter method, without making any code changes. So, the Travel object is loosely coupled with Car object/Bike object.

Inversion of Control(IoC):

· Inversion of control is a new approach or a design principle, where some responsibilities of a developer are inverted to the another component like a framework.
· The responsibilities are like creating the objects, injecting the dependencies and destroying the objects are inverted to the framework.
· So, instead of a developer is a controlling the objects, the control is inverted to another component like a framework. That’s why it is called inversion of control.

[image:]

Dependency lookup and Dependency injection:

· Dependency lookup and Dependency injection are two mechanisms two implement the IoC principle. So, we call them as two design patterns.
· In Dependency lookup, the container creates the dependent objects and dependency objects. But, the container doesn’t inject the dependency objects to the dependent objects.
· So, a dependent object should have code internally to search/lookup for its dependency objects and should get them.
· In Dependency injection, the container creates the dependent objects and dependency objects. Also, the container injects the dependency objects to the dependent objects.
· In Spring Framework, the Spring Container is implemented through Dependency Injection pattern.

[image:]

spring configuration file:

· A spring configuration file is an xml file.
· This file is used to provide the meta information/meta data about the spring bean classes to the Spring container.
· A spring configuration file name could be anyname.xml
· The root tag of the xml is, <beans>
· The parent tag is <bean>
· The <bean> is used to configurate a spring bean class.
· If multiple classes are available then you have to use multiple <bean> tags.
 config.xml

<beans>
 <bean id = “sa” class = “com.pack.ServiceA”>

 </bean>
 <bean id = “sb” class = “com.pack.ServiceB”>

 </bean>
</beans>

Who is a Spring Container?

· Spring container is nothing but, it is a class provided by spring framework only and it will take care of the responsibilities like, creating the objects, managing the objects, destroying the objects etc..
· In Spring, the implementation of classes of the below interfaces are called as spring containers.
· Spring has provided two types containers.
1. BeanFactory
2. ApplicationContext
· BeanFactory interface was introduced in Spring 1.0 version with an implementation class XmlBeanFactory class.
· ApplicationContext interface was introduced in Spring 1.2 version, it is an extension of BeanFactory and 3 implementation classes are provided.
1. ClassPathXmlApplicationContext
2. FileSystemXmlApplicationContext
3. AnnotationConfigApplicationContext

[image:]

Types of Dependency Injections:

1. setter dependency inection
2. constructor dependency injection
3. interface dependency injection

· In setter dependency injection, a dependent object provides a setter method for injecting the dependency object. So, the spring container calls the setter method and injects the dependency.
· In constructor dependency injection, a dependet object provides a constructor for injecting the dependency object. So, the spring container calls the constructor and injects the dependency.
· In <bean> tag, we need to add <property> tag as a child tag, to tell the container that a setter method is provided to inject the dependency object.
· In <bean> tag, we need to add <constructor-arg> tag as a child tag, to tell the container that a constructor is provided to inject the dependency object.
ex1:
[image:]
 [image:]
ex2:
[image:]
 [image:]

 Maven

Build Process of a Java application:

 steps:
1. download the required jars to compile the code
2. add the jars to the classpath.
3. compile the source code
4. download the required jars to compile & execute the testcases.
5. add the jars to the classpath.
6. compile the testcases
7. run the testcases.
8. package the application into a jar file.
9. Deploy the project jar file into a server.

· Suppose, after deploying into a server, the test engineers have identified a bug in the application.
· The developer has to modify the code to fix the bug.
· Now, the developer has to repeat the build process steps.

· Suppose, after deploying into a server, a requirement came to add some new features.

· The developer has to modify the code to add the new features.

· Now, the developer has to repeat the build process steps.

· Repeating the build process steps again and again is a complex task for the developers.

· So, to automate this build process, build tools are provided.

· Apache has provided the build tools called Maven and Gradle.

maven project structure:

[image:]
· As a developer, you are not going to setup the project structure manually.
· Maven has provides archetypes to setup the project structure quickly.
· These archetypes are nothing but, they are the templates to create the project structure quickly.

pom.xml(project object model):
· Every maven project contains pom.xml file in the project folder.
· The use of pom.xml file for a developer is to add the dependencies(jars) required for the project.
· In pom.xml file, a developer has to add the required dependencies under <dependencies> tag.
· If you add the dependencies, maven will download them from central repository and will store them into local repository.
· Suppose, if you are developing a spring core application, then you have to add the following dependency in the pom.xml file.

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>6.2.3</version>
</dependency>
· The local repository will be created in every developers system, when a first maven project is created.
· The location of the local repository is,
C:\Users\Administrator\.m2\repository
· Maven will store the downloaded dependencies in a systamatic way into the local repository.
· First it creates the folders for groupId, then creates artifactId folder, then creates version folders and stores the downloaded jar file in the version folder.
For example:

Maven project parameters:
 groupId : It is a unique id of the organization, to identify the projects of that organization.
 Mostly, reverse name of the domain name of the organization will be used as group id.
 artifactId : It represents the project name
 version : version of the project
 package : package name of the classes.

 Maven commands:
1. compile : compiles the source code
2. test-compile : compiles the test cases
3. test : executes the test cases
4. package : creates the jar file for the project
5. install : installs/stores the jar file into the local repository
6. clean : removes the previously generated artifacts.

· we no need to execute these commands one after the other.
· if we execute package command, then maven completes, compile, test-compile, test and package commands.
· Maven stores the generated artifacts into target folder.
· Before we again build the same project, we clean the previous build.
· when you run clean command, maven deletes all the artifacts from target folder.
Note: If you want to know the spring versions, visit
https://repo.maven.apache.org/maven2/org/springframework/spring-context/
First Spring application:

1. launch STS IDE choose the workspace
2. File New Maven Project Next Filter: maven-archetype-quickstart choose the groupId: org.apache.maven.archetypes next Now enter the project parameters :
 groupId in.ashokit
 artifcatId SpringSetterDemo
 version 0.0.1-SNAPSHOT
 package com.pack.beans
 Finish
3. open pom.xml file, add the below dependecy.
 	<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>6.2.3</version>
 </dependency>
4. expand src/main/java, then package com.pack.beans, then delete App.java
5. Right click on com.pack.beans, create a new class User.
package com.pack.beans;

//dependent class
public class User {
	
	PasswordEncoder passwordEncoder;

	public void setPasswordEncoder(PasswordEncoder passwordEncoder) {
		this.passwordEncoder = passwordEncoder;
	}
	
	public void login(String username, String password)
	{
		System.out.println("Login success...");
		System.out.println("Username : " + username);
		System.out.println("Password : " + passwordEncoder.encodePassword(password));
	}

}
6. Right click on com.pack.beans, create new class PasswordEncoder.
package com.pack.beans;

import java.util.Base64;
import java.util.Base64.Encoder;

//dependency class
public class PasswordEncoder {
	
	public String encodePassword(String password)
	{
		//creating Encoder object
		Encoder encoder = Base64.getEncoder();
		
		//converting password into bytes
		byte[] bytes = password.getBytes();
		
		//encode the password into encoded password
		String encodedPassword = encoder.encodeToString(bytes);
		
		return encodedPassword;
	}
}
7. expand src right click on main New folder folder Name: resources finish

8. Right click on src/main/resources New File filename: beans.xml --> finish
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id = "user" class = "com.pack.beans.User">
 <property name = "passwordEncoder" ref = "pwd"/>
 </bean>

 <bean id = "pwd" class = "com.pack.beans.PasswordEncoder">
 </bean>
</beans>

9. Right click on src/main/java new package com.pack.main finish
10. right click on com.pack.main New class name: Main select main() checkbox finish.
package com.pack.main;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import com.pack.beans.User;
public class Main {

	public static void main(String[] args) {
		
		//step1 : start the spring container
		ApplicationContext ctx = new ClassPathXmlApplicationContext("beans.xml");
		
		//step2: get the bean from the container.
		User user = ctx.getBean("user", User.class);
		
		//step3: call the method.
		user.login("admin", "admin@123");

	}

}

11. right click on project RunAs Maven Build… Goals: package Run
12. Right click on project - refresh
13. Right click on Main.java RunAs Java Application.

Circular dependency:

· Suppose if we have two components ServiceA and ServiceB, where ServiceA depends on ServiceB and ServiceB depends on ServiceA, then it is circular dependency.
· If both the components have defined a constructor for injecting its dependency object, then we will get BeanCreationException.
· The solution to this exception is,
1. define a setter method to inject the dependency object, in one of the components.
2. configure the component which has setter method above the other components in the xml file.
[image:]

ServiceA.java

package com.pack.beans;

public class ServiceA {
	ServiceB serviceB;
	
	//setter method
	public void setServiceB(ServiceB serviceB)
	{
		this.serviceB = serviceB;
	}
	
	public void m1() {
		System.out.println("In ServiceA :: m1()");
		serviceB.f1();
	}
	public void m2() {
		System.out.println("In ServiceA :: m2()");
	}
}

ServiceB.java

package com.pack.beans;

public class ServiceB {
	ServiceA serviceA;
	//constructor
	public ServiceB(ServiceA serviceA)
	{
		this.serviceA = serviceA;
	}
	public void f1() {
		System.out.println("In ServiceB :: f1()");
	}
	
	public void f2() {
		System.out.println("In ServiceB :: f2()");
		serviceA.m2();
	}
	
}

beans.xml

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">

	<bean id = "sa" class = "com.pack.beans.ServiceA">
 		<property name = "serviceB" ref = "sb"/>
 	</bean>

 <bean id = "sb" class = "com.pack.beans.ServiceB">
 	 	<constructor-arg name = "serviceA" ref = "sa"/>
 	</bean>
 	
</beans>

MainClass.java
package com.pack.main;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

import com.pack.beans.ServiceA;

public class MainClass {

	public static void main(String[] args) {
		
		ApplicationContext context = new ClassPathXmlApplicationContext("beans.xml");
		
		Object obj = context.getBean("sa");
		ServiceA servA = (ServiceA)obj;
		servA.m1();

	}

}

[image:]
		Spring Core Annotations
 	==============================
@Component :
 * It is a class-level annotation.
 * This annotation is used to specify that a class is a
 spring managed bean class.
 * During components auto scanning, spring will identify
 the classes with @Component annotation as spring beans
 and registers them with the spring application context.
 * A class with @Component annotation will be identified as
 a general purpose spring bean, could be used in mulitple
 layers.
 Ex:
 @Component
 public class Validator {
 //methods
 }
 . The above class is registerd in the spring application context with an id as “validator”.

 @Component(value = “id1”)
 public class Validator {
 //methods
 }
 . The above class is registered in the spring application context with an id as “id1”.

 @Service :
 * It is a class level annotation.
 * This is used to specify that a class is a service layer
 or business logic layer class.
 * @Service is derived from @Component.
 * During components auto scanning, spring will identify
 the classes with @Service annotation as spring beans
 and registers them with the spring application context.

 Ex:
 @Service
 public class EmployeeService {
 //methods
 }
 . The above class is registered in the spring application context with id as “employeeService”.

@Repository :
 * It is a class level annotation.
 * This is used to specify that a class is a Data access
 layer or persistence layer class.
 * @Repository is derived from @Component.
 * During components auto scanning, spring will identify
 the classes with @Repository annotation as spring beans
 and registers them with the spring application context.
 Ex:
 @Repository
 public class EmployeeDao {
 //methods
 }
 . The above class is registered in spring application context with id as “employeeDao”.

@Controller:
 * It is a class level annotation.
 * This is used to specify that a class is a presentation
 layer or User Interface layer class.
 * @Controller is derived from @Component.
 * During components auto scanning, spring will identify
 the classes with @Controller annotation as spring beans
 and registers them with the spring application context.
 Ex:
 @Controller
 public class EmployeeController {
 //methods
 }
 . The above class is registered in the application context with id as “employeeController”.

@RestController :
 * It is a class level annotation.
 * This is used to specify that a class is a API layer
 class.
 * @RestController is derived from @Controller.
 * During components auto scanning, spring will identify
 the classes with @RestController annotation as spring
 beans and registers them with the spring application
 context.
 Ex:
 @RestController
 public class EmployeeApi {
 //methods
 }

@Configuration:
 * It is a class level annotation.
 * It is used to mark that a class is a Java configuration
 class.
 * @Configuration is derived from @Component.
 * This annotation indicates that a class is a source for
 one or more @Bean methods.
 * @Bean indicates that a method produces an object(bean),
 that should be stored into the spring container.
 * @Bean is a method level annotation.
 * If you want to explicitly create an object, initialize
 an object and then if you want to push it into spring
 container, then you have to create a @Bean method.
 * Mostly we create @Bean methods for creating and
 initializing the objects for pre-defined classes.
 Because, spring container can create and initialize the
 objects for user-defined classes only.
 Ex:
 @Configuration
 public class AppConfig {

 @Bean
 public JdbcTemplate jdbcTemplate() {
 //instantiating and initializing JdbcTemplate obj.
 return obj;
 }
 }

[image:]
· The above annotations in spring are called stereotype annotations.
Q) what is stereotype annotation?
A) stereotype represents a type which tells the role of a class in an application.

@Autowired :
· This annotation can be used at field level, constructor level or setter level.
· In spring annotations, we got another type of dependency injection called, field injection.
· Field injection means, spring will directly inject the dependency object to the field, by without needing a constructor or a setter method.
· Suppose, if we use @Autowired at field level, then spring performs field injection.
· For field injection, spring internally uses reflection api.
[image:]
· Suppose, if spring can not find a matching bean for autowiring, then throws UnsatisfiedDependencyException.
· To make autowiring a dependency object as optional, we have to provide a parameter required = false, to the @Autowired annotation.
[image:]
 @Qualifier:
· If multiple matching beans are found by the spring, for autowiring then because of ambiguity, again spring throws UnsatisfiedDependencyException.
· To avoid this exception, we can specify a specific bean name with @Qualifier annotation.
[image:]

@Primary:
· This annotation can be used at class-level or at method-level.
· This annotation can be used to specify that a bean is a default choice for dependency inection, when mulitple beans are found of the same type by the spring container.
· Suppose, at injection point, if you want to change the bean for dependency injection, then you have to use @Qualifier explicitly.
ex1:
[image:]
· Here, the spring injects PetrolEngine object as a dependency object to the Car object(dependent object).
ex2:
[image:]
· Here, the spring injects PetrolEngine object as dependency object for both reference variables(engine1, engine2).
ex3:
[image:]
· Here, the spring injects PetrolEngine object as a dependency object for engine1 and DieselEngine object as a dependency object for engine2.
· @Primary is a default choice and @Qualifier is an explicit choice.
· If both are used then @Qualifier gets more priority.
· @Qualifier is used at injection point and @Primary is used to declaration level.
[image:]
[image:]
[image:]
[image:]

[image:]
Movie.java

package com.pack.model;

public class Movie {
	private final String name;
	private final int year;
	
	public Movie(String name, int year) {
		super();
		this.name = name;
		this.year = year;
	}

	public String getName() {
		return name;
	}

	public int getYear() {
		return year;
	}
	
}

MovieRepository.java

package com.pack.repository;

import java.util.ArrayList;
import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Repository;

import com.pack.model.Movie;

@Repository
public class MovieRepository {
	
	@Autowired
	ArrayList<Movie> moviesList;
	
	public List<Movie> findByYear(int year) {
		
		List<Movie> foundList = new ArrayList<>();
		for(Movie movie : moviesList) {
			if(movie.getYear() == year)
				foundList.add(movie);
		}
		return foundList;
	}

}

MovieService.java

package com.pack.service;

import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import com.pack.model.Movie;
import com.pack.repository.MovieRepository;

@Service
public class MovieService {
	
	@Autowired
	MovieRepository repository;
	
	public void showMovies(int year) {
		List<Movie> lst = repository.findByYear(year);
		for(Movie m : lst) {
			System.out.println("Name : " + m.getName());
			System.out.println("Year : " + m.getYear());
			System.out.println("===========================");
		}
	}

}

AppConfig.java

package com.pack.config;

import java.util.ArrayList;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;

import com.pack.model.Movie;

@Configuration
@ComponentScan("com.pack")
public class AppConfig {
	
	@Bean
	public ArrayList<Movie> mList() {
		ArrayList<Movie> arrList = new ArrayList<Movie>();
		arrList.add(new Movie("Chaava", 2025));
		arrList.add(new Movie("Pushpa2", 2024));
		arrList.add(new Movie("Yodha", 2024));
		arrList.add(new Movie("Kalki", 2024));
		arrList.add(new Movie("Game Changer", 2025));
		return arrList;
	}
	
}

Main.java

package com.pack.main;

import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

import com.pack.config.AppConfig;
import com.pack.service.MovieService;

public class Main {

	public static void main(String[] args) {
		
		ApplicationContext ctx = new AnnotationConfigApplicationContext(AppConfig.class);
		
		MovieService service = ctx.getBean(MovieService.class);
		
		service.showMovies(2025);

	}

}

@Value: @Value in Spring is an annotation used for injecting values into Spring beans. It allows you to inject values from properties files.
ex:
@Component
public class MyBean {
 @Value("Hello, Spring!")
 private String message;
 @Value("42")
 private int number;

 public void printValues() {
 System.out.println(message); // Output: Hello, Spring!
 System.out.println(number); // Output: 42
 }
}
@PropertySource:

@PropertySource is a Spring annotation used to load properties files into the Spring Environment. It allows you to specify external configuration files that contain key-value pairs, which can then be injected into Spring beans using @Value.

ex:
 config.properties

app.name=MyCustomApp
app.version=2.5.1

 AppConfig.java

@Configuration
@PropertySource(“config.properties")
public class AppConfig {
}
 MyApp.java

@Component
public class MyApp {
 @Value("${app.name}")
 private String appName;

 @Value("${app.version}")
 private String appVersion;

 public void printAppDetails() {
 System.out.println("App Name: " + appName); //op: MyCustomApp
[bookmark: _GoBack] System.out.println("App Version: " + appVersion); //op: 2.5.1
 }
}

image4.png
Browser presentation business Data Access
layer Database

request

STRUTS SPRING
response Framework Framework

SPRING framework : It is provided as an alternate for EJB
technology to develop Business layer easily & fastly.

image5.png
Browser presentation business Data Access
layer layer layer
request

SPRING
response wc

* Spring Framework was initially introduced for only developing
the business layer.

* Later, it is expanded to develop all the layers of an application,
by providing different modules.

Database

SPRING JDB(
&
SPRING JPA

SPRING CORE
&
SPRING AOP

image6.png
* The current applications architecture is,

[}
. ' .
presentation 1 | business Data Access
[}
[}

Browser

layer layer layer

request
SPRING SPRING CORE

REST API &
respons SPRING AOP

Front-end Back-end

image7.png
da&q.

/7" ctass

image8.png

image9.png
Aass

image10.png

image11.png
without IoC Application

([-—) 1. write the classes
. create the objectd

developer . manage the objects

Application

IS' —| 1. write the classes

developer

I_Q_I S . create the obj.ects
. manage the objects
container

image12.png
Dependency Injection:

creates

creates

Dependency lookup:

creates
creates

container

image13.png
BeanFactory < — ____ ApplicationContext
<Kinterface>>

<<Linterface>>
A 7 w.

]
' 4
[}
[}
[

.
[}

'
]
'
'
' ~
'
XmlBeanFactory ClassPathXmlApplicationContext !
'
[}

AnnotationConfigApplicationContext
<<class> <Lclass>> <Lclass>>
FileSystemXmlApplicationContext
<Lclass>>
Legend

-==-=-=--> implements
—> extends

image14.png
dependent class
public class ServiceA

{

ServiceB serviceB;

//setter method
public void setServiceB(ServiceB serviceB)

£
this.serviceB = serviceB;

¥
//other methods

dependency class
public class ServiceB

{
//methods
}

image15.png
beans.xml

<beans>
<bean id = "sa" class = "ServiceA">
<property name = "serviceB" ref = "sb"/>
</bean>
<bean id = "sb" class = "ServiceB">
</bean>

</beans>

image16.png
dependent class

public class ServiceA

{

ServiceB serviceB;

//constructor
public ServiceA(ServiceB serviceB)

£
this.serviceB = serviceB;

¥
//other methods

dependency class
public class ServiceB

{
//methods
}

image17.png
beans.xml

<beans>
<bean id = "sa" class = "ServiceA">
<constructor-arg name = "serviceB" ref = "sb"/>
</bean>
<bean id = "sb" class = "ServiceB">
</bean>

</beans>

image18.png
Project

>| src

main

java

=

test

—=| target

| —> pom.xml

L= *.java (source code)

resources;

= x.xml, *.properties, *.yaml, %.sql

java

L= *.java (test cases)

resources

L'e> *.xml, *.properties, *.yaml, *.sql

image19.png

image20.png
P |

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png
M\ Tepess

‘@

[

image29.png
- & SpringCircularDependency
~ @ src/main/java
~ # com.pack.beans
> [ServiceA.java
> [ServiceB.java
~ # com.pack.main
> I MainClass.java
~ & src/main/resources
=0 beans.xml
» @ src/test/java
> = JRE System Library [JavaSE-17]
> = Maven Dependencies
& target/generated-sources/annotations
& target/generated-test-sources/test-annotations
> & sre
» & target
E pom.xml

image30.png
Difference between constructor and setter injection?

constructor injection

. circular dependency problem can't
be resolved with constructor injection

. To make a dependency as immutable, use
constructor injection.

. We can inject multiple dependencies at
a time with constructor injection.

. If a dependency is final then it can

be injected through constructor injection.

. If a dependency is injected through
constructor, then it can be changed
through setter.

. For injecting mandatory dependencies
use constructor injection.

setter injection

. circular dependency problem can be resovled

through setter injection

. To make a dependency as mutable, use

setter injection.

. We can inject only a single dependency

at a time with setter injection.

. If a dependency is final then it can not

be injected through setter injection.

. If a dependency is injected through setter,

then it can not be changed through
constructor.

. For injecting optional dependencies, use

setter injection.

image31.png
@Component

@Service @Controller @Repository @Configuration

T

@RestController

image32.png
package com.pack.service; package com.pack.service;

@SerYice) @Service
Eubllc class ServiceA public class ServiceB
{
@Autowired //methods
ServiceB sb; }

//other methods

image33.png
package com.pack.service; package com.pack.service;
@Service

Eublic class ServiceA public class ServiceB
{
@Autowired(required=false) //methods
ServiceB sb; }

//other methods

image34.png
package com.pack.beans;

@Component

public class Car

{
@Autowired
@Qualifier("dieselEngine")
Engine engine;

//other methods

package com.pack.beans;

@Component

public class PetrolEngine

{
3

implements Engine

//methods

package com.pack.beans;

@Component
public class DieselEngine

implements Engine

//methods

image35.png
o C O L L package com.pack.beans; package com.pack.beans;

@Component @Component
public class Car @Primary @ﬁgyPonéft bieselEnai
1 public class PetrolEngine pubiic class Dieseitngine
@Autowired implements Engine implements Engine
Engine engine; { {
//methods //methods

//other methods }

image36.png
o C O L L package com.pack.beans; package com.pack.beans;

@Component @Component
public class Car @Primary @ﬁ;TPoneft bieselEnai
1 public class PetrolEngine pubiic class Dieseitngine
@Autowired implements Engine implements Engine
Engine enginel; { {
//methods //methods
@Autowired 3

Engine engine?2;

//other methods

image37.png
package com.pack.beans;
@Component
public class Car

{

@Autowired
Engine enginel;

@Autowired
@Qualifier("dieselEngine")

Engine engine?2;

//other methods

package com.pack.beans;

@Component
@Primary

public class PetrolEngine

{
3

implements Engine

//methods

package com.pack.beans;

@Component
public class DieselEngine

implements Engine

//methods

image38.png

image39.png
@Controller
public class OrderController

{

@Autowired(required = false)
@Qualifier("orderService")
OrderService servicel;

@Autowired
@Qualifier("orderServ")
OrderService service?2;

//other methods

@Service

public class OrderService {

//methods
3

@Configuration
public class AppConfig {

@Bean

public OrderService orderServ() {

OrderService obj
return obj;

new OrderService();

image40.png
Spring application context container

id="orderService"

id="orderController"
OrderService

id="orderServ"

OrderService
object

image41.png
@Controller

. @Service
Eubllc class OrderController public class OrderService {
//methods
@Autowired(required = false) 3
OrderService servicel;
@Autowired
@Qualifier("orderService") @Configuration

OrderService service?2; public class AppConfig {

//other methods @Bean

@Primary

public OrderService orderServ() {
OrderService obj = new OrderService();
return obj;

image42.png
Spring application context container

id="orderController"

id="orderService"

OrderService
object

id="orderServ"

OrderService
object

image43.png
AnnotationExample
~ @ src/main/java
~ # com.pack.config
> O AppConfig.java
v # com,| pack main
.
~ # com.pack.model
> 1 Movie java
~ & com.pack.repository
> & MovieRepository.java
~ # com.pack.service
> 1 MovieService java

image1.png
Browser presentation business Data Access
layer layer Database

request

response

* Initially, Java realtime projects were developed by using the above
technologies.
Servlet & JSP technologies : For presentation layer
JSP(Java Server Page)
EJB(Enterprise Java Beans) : For business layer
JDBC(Java Database Connectivity): For Data access layer

image2.png
Browser presentation business Data Access
laver layer layer Database

request

STRUTS
response Framework

* STRUTS framework was introduced to develop the presentation layer
easily and fastly. STRUTS was the first Java Framework.

image3.png
Browser presentation business Data Access
layer Database

request

STRUTS
response Framework

* Hibernate Framework was introduced to develop the Data Access Layer
of the project easily and fastly.

