Java Documentation:
==============
-> Comments within the program or above to the program or below to the program are called as "Documentation".
-> There are two ways to write comments in java program:
	1) Single line commenting

	-> Single line comments can start and end within the same line
	-> Single line comments can always start with '//'

	2) Multi line commenting

	-> When we want to write comments into more than one lines called as "Multi-line comments".
	-> Multi-line comments are always in between /* and */.
-> Comments in any programming language never be execute.
-> Comments can always increase the readability of the program.

// WRITE A JAVA PROGRAM TO FIND THE SUM OF TWO NUMBERS.
/*
	HERE:
	THE TWO NUMBERS STORE INTO TWO VARIABLES
	PERFORM THE SUM ON THOSE TWO NUMBERS
	STORE THAT RESULT INTO NEW VARIABLE
	PRINT THAT RESULT.
*/
class SumOfTwoNumbers{
	public static void main(String[] args)	
	{
		int number1 = 1023;
		int number2 = 3021;
		int sum = number1 + number2;
		System.out.println("The sum of the given two numbers = "+sum);
	}
}

Dynamic Program:
============
-> When the program provide the output based on the input which we can process at the time of execution is called as "Dynamic program".
-> To write the Dynamic program, we need:
	1) Memory Statement
	2) Input Statement
	3) Output Statement

1) Memory Statement
==============
-> Memory statement describe two things:
	i) How much memory need to create
	ii) What is the range of value can store into crated memory.
Ex:
Ex: int number1 = 1023;
here:
	int ==> datatype
	number1 ==> name of the data ==> Identifier
	1023 ==> value ==> literal
-> To define the memory statement, we need three types of tokens:
	1) Datatypes
	2) Identifier
	3) Literals

Datatypes:
=======
-> Datatypes can be used to describe two things:
	1) Memory of the data
	2) Range of the data
-> Two types of datatypes:
	1) Primitive Datatypes
	2) Non-primitive Datatypes/Reference Datatypes
1) Primitive Datatypes
===============
-> Any basic or fundamental datatype is called as "Primitive datatype".
-> In Java, there are total 8 primitive datatypes:
	1) Byte datatype
	2) Short datatype
	3) Integer datatype
	4) Long datatype
	5) Float datatype
	6) Double datatype
	7) Character datatype
	8) Boolean datatype
-> To represent these 8-primitive datatypes we have 8 keywords.
Keywords:
=======
[image:]
-> Keywords are "pre-defined words" in java.
-> Also called as "Reserved words".
-> Every keyword has the definite meaning can be used to perform the specific task/functionality.
-> According to the Java-8 standards, we have total of 54-keywords.
-> The keywords for Primitive datatype representation are:
	Byte datatype ==> byte
	Short datatype ==> short
	Integer datatype ==> int
	Long datatype ==> long
	Float datatype ==> float
	Double datatype ==> double
	Character datatype ==> char
	Boolean datatype ==> boolean
-> Memory and range of the datatype:

	Datatype
	Keyword
	Default value
	Memory
	Range

	Byte type
	Byte
	0
	1 byte
	-128 to 127

	Short type
	Short
	0
	2 bytes
	-32768 to 32767

	Integer type
	Int
	0
	4 bytes
	-2^31 to 2^31 – 1

	Long type
	Long
	0
	8 bytes
	-2^63 to 2^63 – 1

	Float type
	Float
	0.0 f
	4 bytes
	1.8X10^-38 to 3.4X10^38

	Double type
	Double
	0.0
	8 bytes
	2.3X10^-308 to 1.8X10^308

	Character type
	Char
	\u0000
	2 bytes
	\u0000 to \uFFFF

	Boolean type
	Boolean
	False
	1 bit
	true, false

Note:
=====
Range of data for any type:
	-2^(n-1) to 2^(n-1) - 1
Here:
	n ==> total number of bits

-> Syntax for any data definition using primitive datatypes is:
	datatype name-of-the-data = value;
Ex: byte b = -128;
byte a = 127;
byte c = 0;

-> Long value must be suffixed with 'l' or 'L'.
-> Float data can take maximum of 6 decimal places before and/or after the decimal point.
Ex: 123456.123456f	
-> Float value must be suffixed with 'f' or 'F'
-> Double data can take maximum of 12 decimal places before and/or after the decimal point.
Ex: 123456789012.12345;
-> Character can be defined with single quotes.
Within the single quotes, we can write only the single character.
Ex: 'a', 'Q' valid etc.
'abcd' ==> invalid
-> In java, every character can be defined with a unique value called as "Unicode".
-> ASCII can have only 256 values to represent (0 to 255)
Whereas Uni codes have total 65536 (== 2^15) values. (0 to 65535)
Here:
	0 ==> \u0000
	65535 ==> \uffff
-> Characters can allowed to define with:
	alphabets:
		a to z ==> 97 to 122
		A to z ==> 65 to 90
	Digits: 0 to 9 ==> 48 to 56
image1.jpeg

