Day-02
25-02-2025
=================

Memory Statement:
=============
	datatype name-of-data = value;

Identifiers:
=======
a name
can be used to name any entity within the program
Ex: variables, classes, objects, method etc.

Identifier Rules/Naming Conventions:
========================
1) Identifier should include only:
	alphabets
	digits
	Underscore sign (_)
	dollar sign ($)
2) Identifier never start with digit
but allowed to begin/start with either alphabet or _ or $
Ex: int 9a = 99; ==> invalid representation ==> syntax error
int a = 99;
int _9ab = 77; ==> valid
3) Java keywords are always write in lowercase.
And java keywords never be use as an identifier.
4) Identifiers are case sensitive.

class Identifiers{
	public static void main(String[] args)
	{
		//int 9a = 99;
		// System.out.println(9a); Syntax error
		int a = 99;
		int _9a = 77;
		int $ab = 101;
		// int void = 121; void ==> keyword
		int Void = 121; // Void ==> not a keyword
		System.out.println(a);
		System.out.println(_9a);
		System.out.println($ab);
		System.out.println(Void);
	}
}

Variables:
=======
-> Variable is a name
which can be used to store the value of any type.
-> The variable definition consisting of:
	1) Declaration
	2) Assignment
	3) Initialization
-> Variable Declaration describe:
	1) Type of the variable
	2) Name of the variable
Syntax:
	datatype identifier;
Ex: int a;
-> Variable assignment describe:
	the assignment of value to the variable
Syntax:
	identifier = value;
Ex: int a;	// declaration
a = 121; 	// assignment
-> Variable initialization:
	when we can declare the variable and assignment of the variable within the same line of the program is called as "Initialization".
Syntax:
	datatype variable-name = value;
Ex: int a = 100;

class Variables{
	public static void main(String[] args)
	{
		int a;	// variable declaration
		a = 99;	// assignment

		System.out.println(a);

		char ch = 'R'; // initialization
		System.out.println(ch);
	}
}	
-> The variables can be defined in two ways:
	1) Compile time variable definition/Variable with fixed value representation
	2) Run time variable definition

Input Statement:
===========
	-> Input Statement can be used to take/access the input.	-> During the execution of the program, we can process the input using keyboard that is called as "Run time variable definition".
	-> When we want to define the run-time variable, we need to use "Scanner" object which is belonging Scanner class.
	-> Class -> collection of data and methods
	for every class, we can create one or more than one object.
	-> Object is the reference of the class.
Ex: House on a sight ==> Real object
House plan on a sheet ==> Imaginary object -> class
	-> Scanner class is a pre-defined class in java has defined in the java package called as "util".
Java ==> packages ==> classes ==> data and methods
	-> When we want to use "Scanner" class for the run time variable definition, we need to import "Scanner" class from "util" package.
Syntax:
	import java.util.Scanner;
	-> The import statement can always write above the class definition only.	
	-> After the importing of the "Scanner" class, we should create the object for the Scanner class within the main() method.
	Syntax:
		Scanner Scanner-Object-Name = new Scanner(System.in);
	-> After the creation of the Scanner object, we should use that object for assigning a value to the declared variable.
	using pre-defined methods of Scanner class:
		byte ==> nextByte()
		short ==> nextShort()
		integer ==> nextInt()
		long ==> nextLong()
		float ==> nextFloat()
		double ==> nextDouble()
		boolean ==> nextBoolean()
		char ==> next() etc.,
	Syntax:
		variable-name = Scanner-object-name. scanner-method();

import java.util.Scanner;
class RunTimeVariable{
	public static void main(String[] args)
	{
		Scanner scan = new Scanner(System.in);
		int a; // declaration
		System.out.println("Enter the value for the given variable:");
		a = scan.nextInt();

		System.out.println(a);
	}
}

Dynamic Program Example:
==================
import java.util.Scanner;
class SumOfTwoNumbers{
	public static void main(String[] args)
	{
		Scanner s = new Scanner(System.in);
		int a, b;
		System.out.println("Enter value for a :");
		a = s.nextInt();
		System.out.println("Enter value for b:");
		b = s.nextInt();
		int sum = a + b;
		System.out.println("The Sum of two numbers = "+sum);
	}
}

Output Statement:
============
-> Output Statement can be used to display anything on the screen.
-> To define the output statement, we have three different methods:
	1) println() ==> print line
	2) print()
	3) printf() ==> printed format.
Here the formats of the data are:
	integer ==> %d
	long ==> %l
	float ==> %f
	double ==> %lf etc.,
-> All the above three methods are pre-defined methods in java
have defined in "lang" package of the java library.
Note:
=====
	to use println(), print() or printf() within the program, no need to import the lang package.

-> println() can give new line with every definition.
-> print() can print all definitions within the same line.

import java.util.Scanner;
class SumOfTwoNumbers{
	public static void main(String[] args)
	{
		Scanner s = new Scanner(System.in);
		int a, b;
		System.out.println("Enter value for a :");
		a = s.nextInt();
		System.out.println("Enter value for b:");
		b = s.nextInt();
		
		System.out.println(a);
		System.out.println(b);

		System.out.print(a);
		System.out.print(b+"\n");

		System.out.printf("%d\n",a);
		System.out.printf("%d\n",b);

		System.out.println("The value of a = "+a);
		System.out.print("The Value of b = "+b+"\n");
		System.out.printf("The Value of sum = %d\n",a+b);
		
	}
}

