Day-08
27-02-2025
================

Literals:
======
-> Literal is a value
-> Different types of literals are:
	1) Integral Literals
	2) Floating-point Literals
	3) Character Literal -> 'a'
	4) Boolean Literal -> true, false

1) Integral Literals
----------------------
-> are 4-types:
	1) Decimal Literal
	2) Binary Literal
	3) Octal Literal
	4) Hexadecimal Literal
-> Decimal literal is called as "base-10" literal.
	because the decimal literal can allow to define with total of 10 letters.
	Those are:
		0 to 9
Ex: salary = 350000;
-> Binary literal is called as "Base-2 literal".
	because this allow to define with only two letters
	those are:
		0 and 1
-> The binary literal in java can always prefix with '0b' or '0B'.
Ex: 1010101 ==> decimal by default
0b1010101 ==> binary
-> Octal literal is called as "base-8" literal.
	because this can allow to define with the total of 8 letters.
	those are:
		0 to 7
Ex: 123, 1023 etc. ==> decimal by default
-> The octal literal in java can always prefix with '0'.
Ex: 0123, 01023 ==> octal
-> Hexadecimal literal also called as "Base-16" literal.
	because , we can use the total of 16 letters to define the hexadecimal numbers.
	those are:
		0 to 9, 
		alphabets: a to f
	Here:
		a ==> 10, b = 11, c = 12, d = 13, e = 14 and f = 15
->also called as "alpha numeral"
-> Hexadecimal literals can always be prefix with '0x' or '0X'
Ex: 0x123, 0XAF12FA etc.
-> Long variable can accept the value from byte range, short range, int range and also long range.
-> long variable value must be suffixed with 'l' or 'L'.
-> Order for the integer datatypes:
	byte << short << int << long 

class IntegralLiteral{
    public static void main(String[] args)
    {
        byte a; // -128 to 127
        short b; // -32768 to 32767
        int c; // -2^31 to 2^31 - 1
        long d; // -2^63 to 2^63 - 1
        
        // a = -130; // compile-time error
        /*  here: -130 is out of the byte range
        the out of byte range value can understand as integer by default.
        integer ==> 4-bytes
        byte ==> 1-byte
        is possible to store 4-byte value into 1-byte? No.
        */
        a = 0B10101;
        System.out.println(a);
        b = 0327;
        System.out.println(b);
        c = 123l;
        System.out.println(c);
        d = 127l;
        System.out.println(d);
    }
}

Note:
=====
-> Any integral literal can able to print by println() or print() or printf() in decimal by default.

Q-1: What happened if the short range value can assign to byte variable?
Ans: Compile time error
Here: short is the 2-byte range value whereas byte is 1-byte range value.
Storing of 2-byte range value into 1-byte range value is not possible. That is why we can get "compile-time error".

Q-2: Is it possible to assign an integer value into long?
Ans: Yes

2) Floating-point Literals
----------------------------
-> there are two ways to define floating-point literals:
	1) using decimal point
	2) using scientific format/exponential format
-> The float literal can always be suffixed with 'f' or 'F'.




class FloatLiterals{
	public static void main(String[] args)
	{
		float f;
		double d;

		f = 1203.234f;
		System.out.println(f);
		f = 1e5F; // 1 X 10^5
		System.out.println(f);
		
		d = 123.094;
		System.out.println(d);
		d = 1.3e-9F; // 1.3 X 10^-9
		System.out.println(d);
	}
}

Note:
=====
No binary literal, octal and hexadecimal literal as float or double value.


Q-1: What happened that I have assigned an integer value to the float variable?
Ans: Possible to assign an integer range value to the float variable.

class FloatLiterals{
	public static void main(String[] args)
	{
		float f;

		f = 1023;
		System.out.println(f);
	}
}

Q-2: What happened that I have assigned a float value to the integer variable?
Ans: Compile-time Error

byte << short << int << long << float << double

3) Character Literal 
----------------------
-> the character can always define with single quote.
That single quote allowed to define with single letter:
	letter can be:
		either: alphabet or digit or special characters.
Ex: 'a', '9', '#' ==> valid characters 
'abcd' ==> invalid
-> To the character variable, we can also allow to assign integer range value also.
-> Java programming language is Uni-code based language.
-> 2-bytes ==> 65536 values
we can allow to assign the values from 0 to 65535 to the character variable.
0 to 9 ==> 48 to 56
A to Z ==> 65 to 90
a to z ==> 97 to 122

class CharacterLiteral{
	public static void main(String[] args)
	{
		char ch;
		ch = 'x';
		System.out.println(ch);
		ch = 1001;
		System.out.println(ch);
		ch = 65535;
		System.out.println(ch);
	}
}
